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ABSTRACT 

Finite Element Modeling of Shallowly Embedded Connections  
to Characterize Rotational Stiffness 

Trevor Alexander Jones 
Department of Civil and Environmental Engineering, BYU 

Master of Science 

Finite element models were created in Abaqus 6.14 to characterize the rotational stiffness 
of shallowly embedded column-foundation connections. Scripts were programmed to automate 
the model generation process and allow study of multiple independent variables, including 
embedment length, column size, baseplate geometry, concrete modulus, column orientation, 
cantilever height, and applied axial load. Three different connection types were investigated: a 
tied or one part model; a contact-based model; and a cohesive-zone based model. 

Cohesive-zone modeling was found to give the most accurate results. Agreement with 
previous experimental data was obtained to within 27%. Baseplate geometry was found to affect 
connection stiffness significantly, especially at lower embedment depths. The connection 
rotational stiffness was found to vary only slightly with cantilever height for typical column 
heights. Results from varying other parameters are also discussed.  

Keywords: finite element modeling, finite element analysis, lateral stiffness, rotational 
stiffness, shallowly embedded connections, embedment, column connections, stiffness 
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1 

1 INTRODUCTION 

1.1 Background 

Steel buildings are relatively common in the United States and other industrialized nations. 

Steel is a material that is relatively strong, lightweight, and durable, and design with steel has 

advanced significantly over the last hundred years. Steel buildings typically require foundations 

that are constructed from reinforced concrete. The connections between steel columns and 

concrete foundations typically come in one of three varieties: shallowly embedded, exposed, or 

deeply embedded. Figure 1-1 illustrates the three connection types. This thesis will focus on 

shallowly embedded connections. 

Shallowly embedded connections are comprised of a column, a baseplate, anchor rods, slab 

on grade, grout and a blockout concrete area.  Figure 1-2 illustrates this configuration. A 

baseplate is welded to the bottom of the column, which distributes forces and moments into the 

foundation. Anchor rods are embedded into the foundation and protrude sufficiently to allow an 

interface with the baseplate. Beneath the baseplate is typically a layer of high strength, non-

shrink grout. The column itself is installed in a sizeable void left in the slab on grade, called a 

blockout, which allows for the installation of the column specimen and grout layer. After 

installation is complete, the blockout is filled with additional concrete. This process allows the 

work of the concrete and steel contractors to remain independent of each other. 
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Otherwise, it is considered pinned. This approach is not entirely unreasonable, but it does 

confuse the issues of stiffness and strength. Since shallowly embedded connections are not 

usually designed to transmit moments, they are considered pinned. However, practicing 

engineers readily admit to not knowing their flexural strength or stiffness (Davis, 2011; Malley, 

2011).  

The presence of blockout concrete is thought to provide additional strength and stiffness 

to the connection, although these have not been characterized thoroughly. Some experiments 

with pile caps have demonstrated that similar connections possess non-negligible stiffness and 

strength, due to the confining effects of concrete embedment. This suggests that the same may be 

present in shallowly embedded connections. 

Quantifying stiffness of shallowly embedded connections will improve future 

engineering models. Researchers have successfully modeled building seismic response with base 

connections modeled as rotational springs (Zareian and Kanvinde, 2013). Base flexibility was 

shown to affect various aspects of seismic response, including interstory drift and the shaking 

intensity associated with collapse.  Once the stiffness of shallowly embedded connections is 

quantified, they can be represented with rotational springs with particular stiffness.  

Although they are the most common connection types in current construction practice, 

shallowly embedded connections remain the least understood (Grauvilardell et al., 2006). Recent 

work has successfully characterized strength and stiffness values for exposed connections 

(Gomez, 2010; Kanvinde et al., 2015), and progress has been made for deeper connections 

(Grilli, 2015), but progress remains lacking for shallowly embedded connections. Most of the 

column base research that has been conducted in the United States has concentrated on 
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connections with exposed baseplates; despite this, the use of both shallowly-embedded and 

deeply-embedded types has been common in the U.S. (Grauvilardell, 2006). 

 Moment frames are typically governed by drift considerations, which are highly sensitive 

to the columns’ boundary conditions. By improving the fixity of the end conditions in current 

models, the drift will likely be reduced, and smaller column shapes will be acceptable choices for 

future moment frames. 

Column buckling capacities are also highly sensitive to boundary conditions. By 

quantifying the end fixity of gravity columns, additional buckling capacity may be demonstrated 

for columns in steel buildings with shallowly embedded connections. 

1.3 Shallowly Embedded Connection Research Program 

To investigate shallowly embedded connections further, a research program is underway 

at Brigham Young University, of which this thesis is a part. In Phase I of the research, Barnwell 

(2015) constructed and tested 12 laboratory specimens of shallowly embedded connection 

details, typical for gravity bearing columns (see Figure 1-4). These tests demonstrated the 

presence of stiffness and strength in these connections. Additionally, a strength model was 

proposed. This thesis is a part of Phase II, and involves using finite element models to determine 

and predict stiffness for these connections. Concurrently with this research, Tryon (2016) is 

using closed-form elastic models to predict the stiffnesses of these connections. In Phase III, a 

second set of laboratory specimens will be constructed and tested to verify the strength and 

stiffness models and extend the findings. 
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models. The results from these models were then aggregated and analyzed to discover trends in 

rotational stiffness values. 

The results from the finite element analysis were validated by comparing stiffness values 

to existing test data from Barnwell’s experiments. In addition, the displacement contour plots 

generated by the computer models were compared qualitatively to displacement contour plots 

generated by the DIC system during experimental testing. 

1.5 Thesis Outline 

The rest of this thesis is organized as follows: 

Chapter 2 presents a literature review, including an in-depth review of the parent study 

(Barnwell, 2015). 

Chapter 3 explains the methods that were used to generate and analyze the finite element 

models. 

Chapter 4 examines the Digital Image Capture (DIC) information from Barnwell’s 

experiments. 

Chapter 5 presents, discusses, and analyses the results that were obtained from the Finite 

Element Models, and discusses their broader applicability. 

Chapter 6 explains the conclusions which were reached as a result of this study, and 

possibilities for future research. 

Appendices A-D include additional information associated with the generation and 

validation of the models used in this thesis.  
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2 LITERATURE REVIEW 

2.1 Corbel Connection Strength 

Marcakis and Mitchell (1980) performed tests on 25 connections of steel members 

embedded into precast concrete. Their tests studied the effects of the following parameters on 

connection strength: inclusion of column axial load; welding reinforcement to the connection; 

the shape of the embedded member; load eccentricity. This research has formed the basis of 

subsequent design strength calculations for steel members embedded into concrete members (see 

PCI Handbook, 1999). 

2.2 Pile Cap Connections 

The U.S. Army Corps of Engineers (Castilla et al. 1984) performed two separate 

numerical analyses of the fixity of steel members embedded in concrete – specifically pile caps. 

The first numerical analysis used a series of independent springs to model the cap, the member, 

and the soil. Springs with linear characteristics represented the concrete cap, and springs with 

non-linear characteristics represented the soil. The second used 2 dimensional linear and non-

linear finite element models, neglecting the soil and instead modeling only the member and the 

concrete. Figure 2-1 shows the setup, as well as the ranges of parameters investigated. Members 

studied were HP steel shapes. Based on the results of both investigations, it was determined that  
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plastic moment of the steel section tested. These results were compared to the ultimate moment 

capacity results from other similar experiments (Shama et al., 2002), and found to be 

significantly greater than the 0.06 Mp observed in the other experiments. High levels of initial 

stiffness were also observed. 

Richards et al. (2011) reported the strength of four separate pile-to-cap connections, 

determined using in-field specimens. Figure 2-3 shows a schematic overview of the specimens 

tested, while Figure 2-4 shows the test setup. Two of the specimens had pile-to-cap 

reinforcement, while three had a concrete fill inside of the pile. The first specimen had rotational 

strengths that far exceeded its expected moment capacity, as calculated using the Marcakis and 

Mitchell equations. The load-deflection response of all four specimens behaved more like what 

would be expected from a fixed connection than a pinned connection, implying greater rotational 

stiffness. The specimen demonstrated significantly greater strength than would have been 

expected from the Marcakis and Mitchell equation alone. 

Several possible mechanisms for the additional observed strength were suggested. One 

was the dowel action from the two bottom grid bars that passed through the piles. However, this 

mechanism alone was insufficient to account for the observed strength. Another suggested 

mechanism was a frictional force between the steel pile and the concrete pile cap. By using a 

static friction coefficient of 0.47, and combining the capacity from the frictional force with the 

capacity of the dowels, sufficient moment capacity was obtained to account for the observed 

strength. It was concluded that friction at the concrete/steel interface may play a significant role 

in resisting lateral forces and their induced moments, although there was not enough 

experimental data to validate this proposed friction mechanism.  
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 It was also shown that rotational stiffness is available in pile cap connections. To 

characterize the stiffness observed, it was necessary to subtract the deformation caused by the 

pile’s deformation, according to the following formula: 

 

Where  

 kconn  = connection stiffness 

 ktot  = total stiffness 

  = 1/ total displacement 

 kcol  = column stiffness 

  = 3EI/L3 

 Figure 2-6 illustrates this stiffness model graphically. The total deformation, measured at 

the point of applied load, consists of the column deformation and the connection deformation. 

Therefore, the connection deformation can be determined indirectly by subtracting the calculated 

column deformation from the measured total deformation. The applied load was then divided by 

this applied deformation to obtain the connection’s stiffness. Using this stiffness model, Figure 

2-7 shows the connection stiffness values measured for the three test specimens. 

2.3 Exposed Baseplate Connections 

Insights into the behavior of shallowly-embedded connections can be gained by 

understanding the results of tests on exposed connections. These exposed connections serve as a 

“lower bound” on the strength and stiffness available from shallowly embedded connections. 

(Cui et al., 2009) Exposed connections are similar to shallowly embedded connections, but 

without an additional layer of non-structural concrete above the baseplate. 
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was doubly symmetric, with identical column specimens at the top and bottom of the concrete 

pedestal. No reinforcement was used.  

At low eccentricities, concrete crushing was the typical failure mode, while for higher 

eccentricities, anchor bolt failure (yielding) occurred first. When anchor bolt failure was the 

primary failure mode, it was accompanied by yielding in the concrete itself.  

Picard & Beaulieu (1984) investigated fifteen (15) specimens of exposed-type connections. 

Theoretical deflection relations were derived for both pinned and fixed connections, and the 

experimental stiffness results were compared to the theoretical values. It was found that axial 

compression increases the fixity factor (related to the rotational stiffness) of the connection, and 

that the assumption of these connections as pinned is conservative. 

Thambiratnam et al (1986) tested a total of twelve (12) exposed baseplate connection 

specimens under combinations of axial loads and moments. Only baseplate behavior was 

investigated. The failure modes that were reported were concrete crushing, baseplate yielding, 

and anchor bolt yielding (see Figure 2-8). At low eccentricity, baseplates failed from cracking of 

concrete. In all other cases, however, baseplate yielding (accompanied by anchor bolt yielding) 

was the primary failure mechanism. 

Wheeler et al. (1998) investigated the flexural strength of exposed connections involving 

rectangular HSS column shapes. Sixteen (16) tests were performed, varying the models’ plate 

dimensions and section types. Analytical models were proposed which accurately predicted the 

ultimate moment capacities of the connections to within 15%. 
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This model proposes methods to determine the contribution each of the above 

deformations to the overall response, and then sums them to obtain a total deformation. The total 

deformation is divided by the length of the baseplate to obtain the total rotation, according to the 

following formula: 

 

Where 

y = rotation at first yield. 

(s + N/2) = the distance between the compression toe of the baseplate, and the centerline 

of the anchor rods on the tension side. 

 The precise methods of calculating (rod),  (tension, plate), (compression, plate), and 

(concrete) are detailed in Grilli (2015). 

Calculating the rotational stiffness is then trivial, i.e. 

 

Where  

 y = Rotational stiffness at point of first yield 

 My = Applied moment at point of first yield 

2.4 Deeply Embedded Connections 

2.4.1 Grilli & Kanvinde (2015) 

Grilli and Kanvinde (2015) investigated deeply embedded connections, referred to in 

their research as embedded column base (ECB) connections. Five (5) specimens were created; 
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failed suddenly and experienced uplift. In the more deeply embedded connections, concrete 

crushing and spalling occurred at the extremities of the embedded region. 

Deeper embedment depths led to increased strength, due to an increased bearing capacity, 

and increased resistance to the tension-uplift failure mode. Applying a compressive axial force 

increased connection capacity, while a tensile force reduced connection capacity. Connection 

yield strength was approximately 70% of maximum (ultimate) connection strength (see Figure 

2-14 and Table 2-2). A model was proposed to characterize the strength of ECB connections 

which accurately modeled the actual strength. 

Research was also conducted on the rotational stiffness of the column connections by 

Grilli and Kanvinde (2015). The investigation focused on the secant stiffness at base yield 

moment,  My
base = 0.7*Mmax

base. Although there was no distinct yield point to the specimens (the 

stiffness varied gradually), a least-squares bilinear curve fitting found the transition point 

between the two lines occurred at an average of 0.72*M(base, max). The value of 0.70 was 

chosen for computational convenience. 

ECB type connections typically allow deformations of 1.25x those expected in the case of 

a perfectly fixed connection (see Table 2-2). That is, the average of all test/ fixed values was 1.25. 

However, this increase in drifts is relatively small when compared to the deformations expected 

with exposed baseplate connections. Counterintuitively, increasing the embedment depth was 

found to cause an increase in average column deflection in some cases (compare deflection 

results from Tests 1-2 to 3-5 in Table 2-2). The authors reason that this may be due to the 

increase in bending length in the column, which is not offset by the increase in concrete bearing.  
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The outputs from the FEA model were compared with the physical test results. The 

values that were correlated were: load-displacement; anchor rod force-drift and strain-drift 

responses; peak loads; and peak base moments. In all cases, the correlation was at least within 

the same order of magnitude as the test results, and in many cases, was able to match the 

experimental data almost exactly. For example, the test-to-predicted ratio for peak loads in the 

seven cases ranged from 0.83 to 1.09. Also, the deformed baseplate geometry was compared 

qualitatively with Gomez’ specimens, and relatively close agreement was found (see Figure 

2-23). Information about bearing stress distributions were also obtained, which was unavailable 

during the experimental investigations. These data suggest that design assumptions of a 

rectangular stress block beneath the baseplate may be inaccurate. 

An additional three tests were performed using only finite element models, which 

expanded and generalized the findings available from Gomez’ laboratory tests. In the first test, 

loading orientation was set to 45 degrees, diagonal to the column orientation. In the second test, 

8 anchor rods (as opposed to 4) were present on the test specimen. In the third, anchor rod 

arrangement was investigated; the rods were arranged in parallel with the column flanges, 

instead of perpendicular to them. As in the first set of models, the response variables investigated 

included load-displacement, anchor rod force-drift and strain-drift responses, and peak loads. 

Yield line patterns and bearing stress distributions were also studied. 

The initial stiffness ratios from the finite element results were between 0.75 and 0.94 

times the recorded values in the laboratory (see Table 2-3). The strain hardening values ranged 

between 0.94 and 3.15 times the values from the experimental data. 
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software, which incorporated a fracture-energy based model. This subroutine was verified by 

simulation of a double cantilever beam test and comparing the results to closed-form solutions.  

Figure 2-24 shows a comparison between the analytical solution and numerical results in 

a double cantilever beam (DCB) debonding problem. Closed-form solutions are available for this 

test, and the numerical results are overlaid on the analytical solution. 

The material strength and cohesive fracture energy parameters were calibrated based on a 

single-edge notched beam (SE(B)) test of the experimental specimen. The calibration 

coefficients were 0.7 and 1.1 for cohesive fracture energy and material strength, respectively. It 

was shown that the simulated crack growth patterns closely matched the experimental results. A 

Riks numerical solution method was used. Nonconvergence occurred when the crack tip reached 

about 40% of the height of the SE(B) test specimen. Of the three mesh sizes investigated (0.1, 

0.2 and 1.0 mm), umerical solutions were insensitive to the mesh size used. 

Julander (2009) compared finite element models to experimental results for transverse 

bridge deck connections. Both shear-key specimens and flexural specimens were constructed, 

tested, and modeled. Four different shear connection specimens were tested and modeled: 

unreinforced shear key; welded stud shear key; non-post tensioned shear key; and post-tensioned 

shear keyFive different flexural connection types were modeled: post-tensioned, welded rebar, 

welded stud, 36” curved bolt, and 24” curved bolt. Figure 2-25 and Figure 2-26 illustrate the 

schematic test setups and FEA models for shear tests and flexure tests, respectively. 

The interface between concrete and grout was modeled with Cohesive Zone Model 

(CZM) elements. The element behavior was bilinear, with both traction and maximum separation 

values defined.  
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specifications, column erection procedures, and grouting requirements are included. Strength 

considerations for several different design load cases are also included. No design guidelines for 

characterizing stiffness are included. 

Recent research done at UC Davis has characterized the stiffness and strength of exposed-

type connections (see Gomez 2009 and Kanvinde et al. 2012). This has led to the inclusion of 

design examples in relevant manuals. 

2.9 Coefficient of Friction 

 The coefficient of static friction between concrete or grout and steel was a necessary 

input parameter in some of the finite element models (see Section 3.1.4). Since this value was 

not determined during the parent study, an attempt to determine it by consulting the literature 

was made. 

The given values in the literature varied widely. Rabbat and Russell (1985) conducted a 

series of fifteen (15) push-off tests, and determined the coefficient of static friction between 

rolled steel plate and cast-in-place concrete or grout. With a wet interface, under normal 

compressive stress levels, the determined coefficient of static friction was 0.65. With a dry 

interface, it was determined to be 0.57. Baltay and Gjelsvik (1990) determine the coefficient of 

static friction to be equal to 0.47. 

Gomez et al. (2010) reported 0.25 as the coefficient of static friction they obtained in 

their tests. However, they cited ACI 349-06 in regards to shear strength, which allows for a  = 

0.9 for baseplates without shear lugs, and  = 1.4 for baseplates with shear lugs that are designed 

to remain elastic. It is noted that the ACI 349-06 requirements are based on earlier testing, in 

which the shear strength was derived as the sum of bearing strength and strength due to 
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Design equations are presented for the two failure modes, derived from research by 

Dierlein et al (1989) and Sheikh et al (1989). In Sheikh et al, an experimental test setup of 15 

specimens was conducted and the results were analyzed. In Dierlein et al., these test results were 

summarized, and design equations were proposed, which were later incorporated into the ASCE 

guidelines (1994). These results were later validated and expanded by Cordova and Deierlein 

(2005). 

Although a detailed understanding of strength considerations is demonstrated in these 

papers, stiffness considerations receive minimal treatment. Sheikh et al. (1989) report the strain 

levels observed in their tests, but make no effort to categorically evaluate the stiffness of the 

studied connections. The ASCE guidelines simply state that “deformations in the joint region 

should be considered in evaluation of deflections under service and factored loads,” and offers 

no additional guidance. The design commentary only notes that commercially available frame 

analysis programs do not explicitly account for joint deformations, but can consider the joint 

deformations implicitly.  

2.11 Field Reconnaissance of Earthquake Damage 

Tremblay et al (1995) performed reconnaissance of steel buildings after the 1994 

Northridge earthquake. The buildings that were inspected were concentrically braced frames, 

moment resisting frames, or a combination of the two. Several failure modes were observed, 

including baseplate fracture, anchor bolt failure, and/or brittle failure of welds connecting the 

baseplates and gusset plates.  
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The rotational restraint of shallowly embedded connections can be significant when 

properly designed. In one instance observed, complete collapse of several bays was prevented 

only by the rotational restraint offered by embedded column baseplates.  

2.12 Parent Study 

The primary finite element model geometries which were investigated for this thesis were 

based on a parent study performed by Barnwell (2015). These tests have shown that there is 

significant strength and stiffness available in shallowly embedded connections. Yield and 

ultimate strength data were obtained from all tests. In addition, usable stiffness data were 

obtained for 7 of the 12 specimens. These tests constitute a parent study for this work, as they 

will form the basis of comparison and validation for the finite element models described in 

Section 3. This section will explain Barnwell’s setup, results, and conclusions. 

2.12.1 Test Setup 

Barnwell conducted laboratory tests of twelve different specimens of shallowly 

embedded connections to determine strength and stiffness values. The testing investigated the 

effects of four variables on connection strength and stiffness: embedment depth, column shape, 

column orientation, and presence/absence of engaged anchor bolts. Table 2-4 summarizes the 

differences in the various specimens. 

The test setup consisted of a frame, and actuator, and a test specimen. The test specimen 

itself consisted of a steel column with attached baseplate, slab-on-grade concrete, footing 

concrete, and block-out concrete. The steel column was either a W8X35 or a W8X48 specimen, 

and the baseplate was a PL 1”x13”x1’1”, fillet welded to the column.  Figure 2-34 shows a 
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The specimens were designed in accordance with AISC Baseplate and Anchor Rod 

Design handbook (Fisher and Kloiber 2006), using a “small moment” approach. The applied 

design moment was considered small enough that it would not cause a tendency to overturn. This 

implies that the anchor rods were not designed to withstand tension loads. This represents typical 

design practice for gravity-bearing columns in the United States. The columns were designed as 

two-thirds scale models of actual column sizes. 

Determining the cantilevering length of the columns – the distance between the line of 

action of the force of the actuator, and the top of the concrete – was important in the later finite 

element modeling work. In the case of the shallow (8”) embedment specimens, the total length of 

the column was 7’-8” (92”), excluding the baseplate thickness (1”). Although the nominal 

embedment was 8 inches, a 1.5” grout pad and a 1” baseplate reduced the effective embedment 

length to 5.5”. Therefore, the column cantilevered 92”-5.5” = 86.5” from the concrete. 

Additionally, the centerline of the actuator – which represents the line of action of the applied 

force – was 6.25 inches from the top of the column. Therefore, the total cantilever distance was 

80.25”. The deep (16”) embedment specimens had total column lengths of 8’-7” (103”). Using 

similar reasoning, the deeply embedded columns had a protruding length of 83.25” (103” – 13.5” 

– 6.25”). Table 2-5 summarizes these calculations. 

Table 2-5: Cantilever Height Calculations 

  

Starting 
Column 
Length 

 Embedded 
Column Length 

 Actuator 
centerline to 

slab on grade: 
Cantilever 

Length: 
Shallow 92 5.5 6.25 80.25 

Deep 103 13.5 6.25 83.25 
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Digital Image Capture (DIC) instrumentation recorded the displacement fields near the 

surface of the connection during the testing. The DIC data showed deformations on the exposed 

surface of the concrete foundation, and in the column. Analysis of the data was not included in 

Barnwell (2015), but it is analyzed in Chapter 4 of this thesis. 

2.12.2 Test Results 

Barnwell’s research showed that there is substantial strength and stiffness in shallowly 

embedded connections, which is not accounted for in current design practice. This confirms, for 

the case of shallowly embedded connections, what was suggested by the work of Richards et al. 

(2011) and Eastman (2011) in the case of pile cap connections. 

The common failure mechanisms in Barnwell’s tests were concrete cracking and anchor 

bolt yielding/fracture. This suggests that force transfer occurred through both the confining 

concrete, and the baseplate.  

Barnwell’s test data showed that even shallowly embedded columns at 1x embedment 

depth showed higher strength than expected. The connections are 86-144% stronger in yielding, 

and 32-64% stronger in ultimate strength, than is predicted by current design methods. An 

improved model was proposed that would account for the additional strength in the connection. 

Instead of assuming that the overturning moments are resisted only by tension and compression 

only in the baseplate, the model proposes that substantial portions of the concrete slab also resist 

compressive forces cause by overturning moments. Barnwell’s model accurately predicts the 

strength of the connection to within 18% of tested values. 
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Barnwell used the same elastic stiffness model used by Eastman (2011), reproduced 

graphically in Figure 2-36.  The stiffness mechanism assumes that the total deflection can be 

treated as the superposition of two independent deflections The first, c, represents the deflection 

of the column itself, neglecting any flexibility of the connection. The second, conn, represents 

the deflections caused by the deformation and rotation of the connection itself. Both mechanisms 

have associated lateral stiffness values, which are denoted kc and kconn, respectively. Therefore, 

 

 

 

(Note: this model is mathematically equivalent to that of springs in series.)  

 

Additionally, kc is equivalent to k for a cantilevered beam with a point load on the end, that is, 

 

And so 

 

The stiffness results were obtained from initial tangent stiffness values, measured as the 

load varied between 0 and 1 kip of applied force. Although theoretically the force-displacement 

response should be basically linear over such a small range, detailed measurements showed that 
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Figure 2-37: Example of Total Stiffness Calculation (Barnwell, 2015) 

 

 

 

Figure 2-38: W8X35 Lateral Stiffness Values (Data from Barnwell, 2015) 
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Figure 2-39: W8x48 Lateral Stiffness Values (Data from Barnwell, 2015) 

 

Figure 2-40 shows stiffness results for W8x35 shapes, with weak axis bending. In the 

shallow embedment specimen, a control error caused loading that deviated from the normal 

loading protocol in the shallow embedment specimen. The data sampling rate was low relative to 

the unexpectedly high displacement rate, so the result is considered likely to be unreliable.  

 

Figure 2-40: W8x35 Lateral Stiffness Values (Weak Axis Bending) (Data from Barnwell, 
2015) 
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Overall column stiffness was between 54% and 83% the total stiffness expected from 

theoretically fixed connections (see Table 2-6). Barnwell did not propose a model to explain or 

characterize the observed stiffness values. However, the stiffness increases were greatest in 

models with larger column shapes; with greater embedment depths; and with the load applied 

parallel to the column’s web (strong-axis orientation). Interestingly, engaging (or failing to 

engage) the anchor bolts had no significant effect on the initial elastic stiffness of the connection 

(see Figure 2-39).  

 

Table 2-6: Calculated Stiffnesses Based on k3 (Barnwell, 2015) 

Specimen kt kc kconn kt/kc 

A1 12.57 21.38 30.49 0.59 

A2 16.65 30.97 36.02 0.54 

A3 5.96 7.17 35.24 0.83 

CA2 15.75 30.97 32.04 0.51 

B1 14.66 19.15 62.52 0.77 

B2 21.31 27.74 91.82 0.77 

B3 5.17 6.42 26.60 0.81 

CB2 23.20 30.97 92.42 0.75 

 

  



www.manaraa.com

57 

3 METHODS OF INVESTIGATION 

Section 3.1 explains the method of generating and analyzing a single, typical model. 

Section 3.3 explains how scripts were generated to automate the generation of multiple models, 

enabling parametric studies. Section 3.5 outlines the limitations and assumptions inherent in the 

model. Section 3.4 summarizes the models created for this research and the variation between 

them. 

3.1 Finite Element Models 

All finite element modeling (FEM) was performed in Abaqus 6.14. Model generation was 

performed in Abaqus/CAE. Two parts were created, meshed, and assigned material properties. 

Each part was instanced and positioned in the assembly, and constraints, contact properties, and 

boundary conditions were applied. A load step was created, a static load was applied, and a field 

history response request was created. Then, a job was created and submitted to Abaqus/Standard 

for processing. After processing, the displacement at the point of applied load was queried, and 

the connection stiffness was calculated.  

3.1.1 Model Geometry 

A 3-dimensional part was created for the column. The column’s cross sectional profile 

was sketched and extruded, with beam depth (db), flange length (bf), flange thickness (tf), and 
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web thickness (tw) values obtained from the AISC Steel Construction Manual. The part was 

created as a half model, with symmetry constraints later imposed across the yz-plane (see section 

3.1.4). However, since the plane of symmetry differed depending on the loading direction, 

separate models were created for strong-axis and weak-axis bending specimens. Figure 3-1 

illustrates both strong- (a) and weak-axis (b) sketches. The sketch was extruded to the given 

cantilever length (pL), and a rectangular baseplate of appropriate dimensions was extruded at the 

bottom of the column. To facilitate automatic meshing later, the part was partitioned into wholly 

rectangular regions, which Abaqus’ meshing algorithms could handle easily and uniformly. This 

was done by creating cut planes from existing planes on the part. Also, a partition was created at 

the point corresponding to the top of the slab on grade. See Figure 3-3 for an illustration of 

partition locations. 

Several simplifications were made to the column and baseplate. Fillets were excluded for 

simplicity, and because preliminary analysis suggested that their absence would have negligible 

effects on overall connection stiffness. The anchor rods, anchor bolts, and anchor holes were also 

excluded because the physical specimens with anchor bolts engaged had nearly identical stiffness 

values as those with anchor bolts disengaged (Barnwell, 2015), and the focus of the investigation 

was on initial elastic stiffness. 

A 3-dimensional foundation part was also created. The part was 42” square, with a depth 

extending 13” below the bottom of the baseplate. This closely resembled Barnwell’s 

experiments, which had 13” total beneath the baseplate (12” of concrete and 1” of grout), and 

was 84” square. The dimensions were reduced to facilitate rapid computation, after it was 

discovered that the results on overall stiffness would be negligible (see Appendix A). An 

extruded cut was made to create a profile that more closely represents that of Barnwell’s 
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3.1.3 Material Properties 

Linearly elastic materials were defined for steel, and concrete. The material properties are 

summarized in Table 3-1. The Young’s modulus for concrete was specified as 3.5 * 10^6 psi, a 

value relatively close to the value obtained for f’c = 4,000 psi, from the ACI Code (section 8.5.1)  

 

Where f’c = 4,000 psi.  

(The actual value calculated from this equation was 3.60 x 105, but this slightly conservative 

value was chosen for computational convenience.) All concrete was given the same modulus, 

including the area of high-strength, non-shrink grout. This was done to greatly simplify the 

modeling process, and because results suggested the effect would be minimal (see Section 5.3). 

Also, since the grout would have a higher modulus than the concrete, neglecting the grout was 

considered conservative.  

 

Table 3-1: Default Material Properties 

Material Young’s Modulus (psi) Poisson’s Ratio 

Steel 2.9 * 10^7 0.27 

Concrete 3.5 * 10^6 0.15 

 

 

The concrete was modeled as an elastic material because the applied load was 

specifically chosen so as to reduce the effects of material nonlinearity on the system’s response. 

The object of this research was confined solely to the initial tangent stiffness, before high levels 

of material nonlinearity were seen in the experimental results.  
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The effects of rebar on the system response were neglected. Increasing the modulus of 

concrete uniformly (see Section 5.3) was not found to significantly increase agreement with 

Barnwell’s results, so the effects of rebar were believed to be of negligible benefit. 

3.1.4 Assembly and Boundary Conditions  

The column and foundation parts were instanced in the assembly module in Abaqus. 

After each was instanced, it was positioned so that the column fit into the void left for it in the 

foundation part. 

A fixed boundary condition was created that modeled the bond between the lab floor and 

the test pedestal. Likewise, fixed boundary conditions on the edges of the concrete pedestal that 

run parallel to the applied force represented the post-tensioned anchors that bonded the concrete 

pedestal to the floor. Sensitivity studies (see Appendix A) suggest that the precise nature of the 

boundary conditions has minimal effect on the overall stiffness results (>2%); it is believed that 

this is due to the extremely low stresses and strains experienced at the model’s edge. 

A symmetry boundary condition in the x-direction (yz-plane) was also applied, because of 

the half-model nature of these models. This boundary condition constrained movement in the X 

direction, and rotations about the y- and z- axes, for all nodes on the boundary; it allowed for 

displacement in the y and z directions, and rotation about the x-axis. 

The results produced from the two model types differed not only in terms of the stiffness 

values obtained, but also in terms of the stress and displacement fields produced in the concrete. 

A major focus of investigating the DIC data was to analyze the strain profile in the concrete 

pedestal, and determine which of the models would be considered more reliable. Results from 

both model types were collected and analyzed.  
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3.1.6 Job Submission and Postprocessing 

A field history request was created that contained displacement information at the point 

of applied load. A job was then created in Abaqus/CAE, and submitted to Abaqus/Standard for 

processing. Four processors were used in parallel. 

 Upon completion of the analysis, the field output request was queried, and its information 

was submitted to an XY report in Abaqus. From there, the data in the XY report was exported to 

a report (.output) file. The report file was then read for the displacement value, and exported to a 

database (.csv) file which could be opened and manipulated in Microsoft Excel. With the 

displacement value available, the connection stiffness was calculated according to the equations 

in Section 3.1.7. 

3.1.7 Linear and Rotational Stiffness Models 

The linear stiffness model used by Eastman (2011) and Barnwell (2015) was used to 

compute the connection lateral stiffness. That is,  

 

Where 

F = applied force = 1 kip. 

total = total displacement measured at the point of application of the force 

E = Young’s Modulus of the column = 2,900 ksi 
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I = Moment of inertia of the column about the bending axis 

Also, the rotational stiffness of the connection was computed, as follows:  

 

 

 

Where  

M = induced moment due to lateral loading 

conn = connection rotation 

L = cantilever length of the column 

conn = F / kconn 

These calculations assume that the entire connection can be modeled as a linear rotational 

spring of stiffness . 

3.2 Model-Type Specific Modeling 

Three different model types were developed, each with different connection mechanisms 

between the column and the concrete. The first model type, a contact-based model, modeled the 

force transfer mechanism as primarily occurring through bearing pressure in compression, with 

frictional forces in shear, and allowing separation of the bodies in tension. The second model 

type, a cohesive zone-based model, used very thin elements of cohesive material at the interface, 

which represented the imperfect bonding between the column and the foundation (from physical 

and chemical adhesion) as a layer of cohesive material with a reduced modulus. The third 
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method, a tied-based model, represented the two parts as one part, with a perfect force transfer 

mechanism between them. 

This section will explain the various methods that were used to generate models in each of 

the three different model types. 

3.2.1 Contact-Based Connection Modeling 

In the contact-based model, the two parts were connected with contact interactions, 

including a hard contact pressure-overclosure formulation for normal forces, and a frictional 

formulation for tangential forces. Therefore, if two surfaces are not in contact, no pressure will 

be applied, and separation will be allowed between the surfaces. If the two surfaces are in 

contact, there will be no overclosure, and pressure will be nonzero. Stated mathematically,  

 

 

Where  

p = contact pressure between two surfaces at a point; 

 h = overclosure, which is the depth of interpenetration between the two surfaces. 

The contact constraint is enforced numerically with a Lagrange multiplier representing 

the contact pressure (Abaqus 2014). Shearing between surfaces with normal pressure is allowed, 

if the shearing stress exceeds the normal stress times the coefficient of friction. 

Given the wide variation in coefficients of static friction available from the literature (see 

Section 2.9) in a wide variety of circumstances and tests, a sensitivity study was performed. In 

this study (see Section 5.1.2), it was shown that the actual value makes little difference in the 

stiffness results. A conservative value of the static friction coefficient was therefore taken as 
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zones. For ease of programming, a datum plane was created for each cut, which was offset by 

0.001” from the existing face. Then the existing cells were selected and divided using the “divide 

by datum plane” option. The faces on the exterior of the cohesive zones were then tied to their 

corresponding faces on the column part.  

The cohesive zone cells were then assigned appropriate cohesive elements and material 

definitions. The cohesive zones were assigned COH3D8 elements. Abaqus describes these as “8-

node three-dimensional cohesive element[s].” The cohesive elements were assigned a cohesive 

material definition with traction-separation relationships defined. Since this could not be directly 

measured, several tests were performed (see Section 5.1.1) to investigate which values of 

traction-separation would give results closest to the observed values. Thus, the traction-

separation values became a calibrated parameter. 

3.2.3 Tie-Based (One-Part) Modeling 

In the “tie-based” or “one part” method, both the column and the foundation were 

modeled as one part, with a continuous mesh between the two. Only the material properties 

between the column and the foundation varied. This was accomplished in Abaqus by creating 

and instancing both column and foundation parts in the assembly module as described above, 

and then using Abaqus’ functionality to combining parts into one part, also in the assembly 

module. This ensured perfect force transfer at the interface between the column and the concrete. 

This is numerically equivalent to a “tie” constraint between the two parts, but requires 

significantly less computational time, and ensures a compatible mesh. 
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3.3 Automatic Model Generation 

Abaqus/CAE processes commands from the user interface in the Python programming 

language. These commands are automatically saved in a journal (.jnl) file, and are also saved into 

a separate file when recording a macro. Many of the Python commands are highly specific to the 

Abaqus software package, with custom libraries available for the sole purpose of creating and 

analyzing Abaqus models. 

 To conduct the analysis process, Python scripts were created that automated the model 

generation and analysis processes. Macros were developed that performed all model creation, 

analysis, and postprocessing tasks, as described in Section 3.1. These macros were then edited to 

1) be easier to read and understand, 2) accept input parameters, 3) loop across desired input 

parameters. Then, every time it was desired to study the effects of one or several variables on 

model behavior, a list of desired variables was created at the start of the scripts, and the scripts 

were run. A detailed explanation of the scripting process and the scripts themselves, are available 

in Appendix E. 

3.4 Model Generation Matrix 

The models that were generated are summarized in Table 3-2.  The primary variable 

studied in each case was embedment depth. Each model was tested at embedment depths from 

0.5 inches to 19.5 inches at 2 inch increments. 
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Table 3-2: Model Generation Matrix 

Variable Investigated Values Shapes Investigated 
Cantilever Length 80.25, 83.25 W8x35, W8X48 

Baseplate Thickness (Full 
Baseplate) 

0.5, 1.0, 2.0, 3.0, 
3.5 

W8x35; W8x48; 
W14x176 

Baseplate Thickness 
(Reduced Baseplate) 

0.5, 1.0, 2.0, 3.0, 
3.5 

W8x35; W8x48; 
W14x176 

Column Orientation Strong, Weak W8x35; W8x48 

Concrete Modulus 2.9E4, 2.9E5, 
2.9E6, 2.9E7 W8x35 

 
3E5, 3.5E5, 4E5, 

4.5E5, 5E5 W8x35 

 
3E6, 3.5E6, 4E6, 

4.5E6, 5E6 W8x35 

Column Shape -- W8x35; W8x48; 
W14x176; W24x76 

Presence of Axial Load 
 (x lateral load) 

0.5, 1, 2, 5, 10, 20, 
50 W8x35; W8x48 

Traction-Separation 
Relationship 

1E4, 5E4, 1E5, 
5E5, 1E6 W8x35; W8x48 

3.5 Assumptions and Model Limitations 

A number of limitations and simplifying assumptions are inherent in the finite element 

models generated. These include the following: 

Linear elastic material behavior at low strains; 

Geometric linearity; 

Limitations inherent in the discretization process in the finite element solver; 

Anchor bolts, grout pad, column fillets, baseplate welds, rebar, and construction joints 

were not modeled due to the additional complexity they would create in the model, and 

because their effect on stiffness was considered negligible, based on the experiments 

performed by Barnwell (2015). 
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4 DIC DATA AND ANALYSIS 

In Barnwell’s study, Digital Image Capture (DIC) data were collected and stored. The 

DIC system consisted of two high-resolution cameras recording the column and pedestal during 

the course of the loading procedure, and speckled paint applied to the specimen itself. The 

presence of the two cameras allowed software to determine the exact spatial coordinates of every 

point on the specimen, via triangulation. The individual points of paint were used by the software 

as reference points, which allowed the software to determine displacement fields with relatively 

high precisions. The software used was Ristra 4D. This DIC data were generated for every 

specimen. Although this data were recorded during Barnwell’s tests, it was not analyzed in the 

course of his research; it is presented and analyzed for the first time here.  

Table 4-1 summarizes the tests which are analyzed in this section. The tests that were 

subsequently labeled A1-B4 in Barnwell (2015) were originally labeled A-K during laboratory 

testing; the table lists both labels. 

The qualitative results for displacement in the direction of applied loading, and parallel to 

the length of the column are presented. These directions are called the Y-direction and Z-

direction, in keeping with the coordinate system established for the Abaqus models (see Section 

3.1). The software used had an option available to remove the rigid body motion (rigid body 

motion removed, or RBMR). Without this option enabled, it would have been very difficult to 
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Test B1 (H) was of a W8x35 shape, with 16” of embedment, and strong axis bending. 

Figure 4-3 shows the RBMR displacement in the direction of the applied force. This figure was 

sampled at an applied load of 8861lbs, pushing away from the camera. Although reliable data 

is not available for the area circumscribed by the column flanges (due to interference from 

instrumentation cables), the zone of greatest visible deformation is directly bordering that area. 

This supports the hypothesis that the greatest deformation will occur within the circumscribed 

area. 

 Figure 4-4 shows deformation in the direction parallel to the column itself, taken at the 

same moment of testing. It shows the slab experiencing uplift much closer to the column itself, 

deforming in a more flexible manner than the slab in Figure 4-2. This would only be possible if 

microcracking – or cracking beneath the surface – allowed differential deformation. This 

suggests that the slab may have behaved in different manners between the different specimens. 

4.3 Test A2 (B) 

Test A2 (B), was of a W8x48 shape, at 8” of embedment, and bending about the strong 

axis. Figure 4-5 shows the RBMR y-displacement at an applied load of 8828 lbs, pushing 

towards the camera. As in other tests, it appears to show a greater displacement in the area 

circumscribed by the flanges, and especially at the point closest to the intersection of the web 

and flange. Figure 4-6 shows the Z-direction under the same load. 
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5 FINITE ELEMENT MODEL RESULTS AND DISCUSSION 

In Section 5.1, the experimental results from Barnwell (2015) will be compared to the 

results from three families of FEA models. In Sections 5.2 through 5.5, the effects of varying 

various input parameters on connection stiffness will be investigated. These include: column 

shape (5.2), concrete modulus of elasticity (5.3), baseplate geometry (5.4), axial load (5.5), and 

column orientation (5.7).  

The available connection stiffness typically approaches an asymptotic upper limit as the 

embedment depth increases. The maximum stiffness value, and the rate of gain of stiffness with 

embedment depth, are both governed by the geometry of the column connection, and the material 

properties of the concrete into which the column is embedded.  

5.1 Comparison of Model Types with Barnwell (2015) 

By comparing the results of the three separate model types with Barnwell’s results, it was 

determined that the contact-based model is likely most accurate at shallow embedment depths, 

while a calibrated cohesive zone based model is likely most accurate for deeper embedment 

depths. Therefore, results from both cohesive-zone models and contact-based models will be 

included in subsequent results sections. 
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As noted previously (Section 2.12.1), there is a 2.5 inch discrepancy between the 

blockout depths – which Barnwell refers to in his study – and the embedment depth of the 

column. This study will reference the values of embedment depth, not blockout depth. 

5.1.1 Cohesive Zone-Based Model 

The presence of a layer of cohesive zone elements allowed for results which were 

intermediate between that of a perfectly-bonded connection, and that of a contact-friction based 

connection only. The results showed increasing connection stiffness with increasing depth. 

Tests with two cantilever heights were performed. In Barnwell’s study, the cantilever 

height Z – from the top of the concrete foundation to the midline of the actuator – varied 

depending on whether the specimen was a shallow or deeply embedded specimen. Therefore, 

complete curves for both cantilever heights were created to allow direct comparison in both 

cases.  

The results can be represented in a variety of different ways. Figure 5-1 is a plot of total 

displacement values obtained by the finite element analysis, overlaid with the displacement 

values obtained by Barnwell, for W8x35 shapes. The dashed lines show the expected 

displacement from a two perfectly fixed connections, owing only to the deformation of the 

columns at cantilever heights of 80.25” and 83.25”. Figure 5-2 shows the linear stiffness 

corresponding to the connection itself, which is equivalent to the inverse of the displacement not 

caused by column deformation. Figure 5-3 shows the rotational stiffness of the connections, 

which is equivalent to the values in Figure 5-2, multiplied by a constant (the cantilever length 

squared).  
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In the case of W8x35 shapes, stiffness values for shallow specimens are overpredicted by 

25.8%, which stiffness values for deeper specimens are underpredicted by 27.06% (see Figure 

5-3 and Table 2-1). 

 

Figure 5-1: Total Displacement; Cohesive Zone Models 

 

Figure 5-2: Lateral Stiffness; Cohesive Zone Models 
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Figure 5-3: Rotational Stiffness; Cohesive Zone Models 

 

Table 5-1: Comparison of Experimental and FEA Results 

Specimen W8x35 Barnwell (2015) FEA Results Ratio
5.5" Embedment 30.49 38.39 0.79
13.5" Embedment 62.52 45.61 1.37

 

Because these figures represent fundamentally the same information, only one type of 

figure will be presented at a time for the body of this paper. Results will be presented in the form 

of linear connection stiffness, corresponding to Figure 5-2, with the exception of Section 5.5, 

which concerns the relationship of the column’s cantilever height to the rotational stiffness. 

Recall that the traction-separation relation was not measured directly during Barnwell’s 

testing, and so was calibrated such that the models matched the experimental stiffness results as 

closely as possible. A traction-separation value of 5*105 psi / inch was used; that is, for every 

inch of separation, a traction (or applied pressure) of 50,000 psi would be required. This value 
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was found to have reasonable agreement with both shallowly and deeply embedded connection 

values, although it was unconservative in the shallow embedment case. Figure 5-4 compares the 

results for various traction-separation relationships with the results from Barnwell (2015). 

 

Figure 5-4: Comparison of Various Traction-Separation Relationships with Barnwell 
(2015) 

 

Figure 5-5 shows a contour plot of a typical von Mises stress field in the concrete part, 

with the column part removed. A large stress concentration exists at the corners of the column 

flanges, especially the bottom flange. Two possible explanations exist for these concentrations. 

The first possibility is a numerical error caused by the tie constraint between a very fine mesh 

and a relatively coarse mesh. The second is an artificial stress concentration caused by the 

sudden discontinuity in material type at the corners, causing a pinching effect in shear of the 

softer cohesive material between the stiffer concrete and steel materials. However, it is not 

immediately clear why this would cause the lower flange to experience greater stress 
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Figure 5-6: W8x35 Specimens, Strong Axis Bending 

 

 Figure 5-7 shows a typical stress field from the contact-based model. Stress 

concentrations are visible along the centerline of the column, near the web-flange intersection. 

Slight stress concentrations are noted near the flange’s corners. 

Various sources have reported different values for the coefficient of friction,  (see 

Chapter 3). Therefore, to investigate sensitivity to the assumed coefficient of friction, a wide 

range of values were tested (at a mesh size of 1.0). The results are shown in Figure 5-8. 

Varying the coefficient of friction has a relatively modest effect for reasonable values of . 

It is impossible to account for the discrepancy in stiffness values at deeper embedment depths by 

varying only to the coefficient of friction, at any reasonable values of . 
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5.1.3 Tied (One-Part) Model 

Perfectly tied models attenuated their forces relatively quickly to the surrounding 

foundation concrete, meaning that maximum stiffness was obtained at relatively shallow 

embedment depths. 

Figure 5-9 shows the difference in stiffness values between the tied model and Barnwell’s 

results. The perfectly bonded model would be very unconservative, and so it was decided not to 

use this bond type for further investigation. It would, however, offer a theoretical maximum 

stiffness available from the connection in the case of a perfect bond between steel and concrete. 

The presence of a theoretical upper limit that could not be exceeded suggests that modeling any 

connection as perfectly fixed, no matter how deeply embedded, could be unconservative.  

 

Figure 5-9: Comparison of Tied Model and Results from Barnwell (2015) 
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5.2 Column Shape 

Four different column specimens were investigated: the W8X35 and W8X48 shapes 

investigated by Barnwell; a W14X176 shape; and a W24X76 shape. The W8X35 and W8X48 

shapes represent light gravity columns. The W14x176 shape represents a typical choice of a 

heavy gravity column, while the W24x76 represents a typical specimen for a moment-resisting 

frame. 

Figure 5-10 shows stiffness results for the chosen specimens. In this figure, as well as in all 

subsequent results, the results from cohesive zone models are shown, with a mesh size of 0.5, 

and a traction-separation value of 5 * 105. 

 

Figure 5-10: Column Shape Results; As Designed 

 

The W14x176 and W24x76 baseplates were sized with the help of a licensed P.E.; design 

justifications can be found in Appendix D. The baseplate for the W14x176 shape is 24” x 24” x 

3.5”. The baseplate for the W14x76 shape has dimensions of 20” x 34” x 3.0”.  
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In the as-designed specimens, the W8x35 and W8x48 shapes asymptotically approach a 

maximum stiffness value as embedment depth is increased. The W14x176 shape begins at a 

much greater stiffness value, and loses stiffness slightly,  

A typical column design for W14x176 and W24x76 calls for thicker baseplates than the 

W8X35 and W8X48 shapes. However, the thickness of the baseplate can significantly affect the 

stiffness performance of the connection (see Section 5.4). Figure 5-11 shows all columns with an 

equal (1”) thickness. This allows a more direct comparison between the shapes, with the 

difference in connection behaviors dictated only by the difference in column size and baseplate 

profile, not by the effects of changing baseplate thickness.  

 

Figure 5-11: Column Shape Results; Equal Baseplate Thickness 

 

Increasing column size increases the lateral stiffness available from connections at all 

depths. The contact-based models show that, at very low levels of embedment, the increase is 
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negligible; however, at embedment depths greater than 1.5 inches, the increase in stiffness 

becomes significant.  

5.3 Concrete Modulus of Elasticity 

Figure 5-12, Figure 5-13, and Figure 5-14 show the effects of varying the Young’s 

Modulus of the concrete. In Figure 5-12, each curve represents a theoretical material with a 

modulus one order of magnitude higher than the line above it. The changing shapes of the 

stiffness line can be attributed to the changing stress distributions which occur as the relative 

moduli of the two materials change. 

Figure 5-13shows results for a typical range of possible concrete modulus values. The ACI 

equation for the Young’s Modulus of concrete, E = 57000 * (f’c) , gives values in this range for 

normal-strength (f’c = 3000 psi) and higher-strength (f’c = 4000 psi) concrete. As can be seen, 

the relationship between concrete modulus and connection stiffness is not linear; an increase in 

concrete modulus of 66% (from 3 * 106 psi to 5 * 106 psi) typically results in an increase of 

approximately 20%. In the case of a 5.5” embedment, for example, the increase is 22.8%.  The 

presence of high-strength grout beneath the baseplate may adjust the results from one curve to 

another, but the relatively minor increase in baseplate stiffness suggests the high-strength grout is 

unlikely to affect the stiffness values significantly. Also, these results suggest that modeling the 

presence of rebar would be unlikely to affect the results greatly, because it would not affect the 

effective Young’s Modulus enough to change the stiffness more than a slight amount.  

Figure 5-14 shows stiffness results for concrete that is approximately an order of 

magnitude less stiff. This would perhaps be equivalent to embedding the column in stiff soil, or 
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concrete which is of very low quality. The results are qualitatively similar to those of Figure 

5-13, although the stiffness values reach about half those above. Also, it appears they reach their 

asymptotic maximum value more slowly than in cases with higher concrete stiffness. 

 

Figure 5-12: Modulus of Elasticity Results, W8x35 shape (Cohesive Zone Model) 

 

Figure 5-13: Modulus of Elasticity Results, W8x35 shape (Cohesive Zone Model) 
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Figure 5-14: Modulus of Elasticity Results, W8x35 shape (Cohesive Zone Model) 

 

5.4 Baseplate Geometry 

Two baseplate geometry configurations were investigated, each with varying baseplate 

thickness values. In the first, the case of a square baseplate, the baseplate extends beyond the 

column profile as would be expected in a typical column.  In the second, that of a reduced 

baseplate, the baseplate’s dimensions do not extend beyond the column profile. 

5.4.1 Square Baseplate 

In the case of W8x35 and W8x48 shapes, the baseplate is 13” square, as in Barnwell 

(2015). In the case of a W14x176 shape, the baseplate is 24” inches. This was designed by a 

licensed P.E. according to typical design processes (see Appendix D). In each case, baseplate 

thickness values of 0.5”, 1.0” (default), 2.0”, and 3.0” were considered. Also, since the design of 
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the W14x176 shape called for a baseplate thickness of 3.5”, a 3.5” baseplate was included in 

each set of column specimens to facilitate direct comparisons. 

Figure 5-15, Figure 5-16 and Figure 5-17 show stiffness results for W8x35, W8x48, and 

W14x176 shapes, respectively. The responses of W8x35 and W8x48 shapes appear qualitatively 

similar, with slightly increased stiffness for the W8x48 specimens. The response of the W14x176 

shape, however, is qualitatively different.  This suggests that different shape families may behave 

differently.

Figure 5-15: W8x35; Varying Baseplate Thickness 

Counterintuitively, baseplates below a certain threshold show a decrease in stiffness as 

embedment depth increases. It is believed that the increasing embedment depth is causing less 

force to be transferred through the baseplate, and more through the bearing mechanism, which is 

the less rotationally stiff force transfer mechanism. This mirrors the slight decrease in stiffness 
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reported by Grilli (2015) which was obtained with an increasing embedment depth. This also 

suggests that increasing baseplate thickness is a relatively simple way to increase connection 

stiffness at shallow embedment depths. In exposed connections, with no embedment, stiffness is 

very sensitive to baseplate thickness. At shallow embedments, baseplate deformations reduce 

connection stiffness, as suggested by Cui et al. (2009). At deeper embedments, however, the 

surrounding concrete stiffens the baseplate area, and reduces the deformation in the baseplate 

itself. 

Figure 5-16: W8x48; Varying Baseplate Thickness 
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Figure 5-17: W14x176; Varying Baseplate Thickness 

 

5.4.2 Reduced Baseplate 

The reduced baseplate was that of a column specimen with baseplate dimensions exactly 

circumscribed by the perimeter of the column. This was of interest in comparing with the 

concurrent research of Tryon (2016), who postulated that the contribution of the baseplate area 

beyond the area circumscribed by the column, was of negligible effect. Also, quantifying the 

stiffness from these reduced sections may allow column designers to specify baseplates with less 

material in columns that are governed by stiffness considerations (rather than stress or column 

uplift considerations). Figure 5-18, Figure 5-19, and Figure 5-20 show results for W8x35, 

W8x48, and W14x176 shapes, respectively, with reduced baseplates. 
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Figure 5-18: W8x35 Results, Reduced Baseplate 

 

The effect of reducing the baseplate profile depends on the thickness of the baseplate 

itself. For very thin baseplates (0.5”), reducing the baseplate actually increases the connection 

stiffness, presumably because the removed area was extremely flexible. Baseplates of normal 

thickness (1.0”) have approximately equal stiffness with either profile. As baseplate thickness 

increases beyond 1.0”, however, the connection fails to increase its stiffness at lower embedment 

depths as quickly as in the case of full-sized baseplates.   
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Figure 5-19: W8x48 Results, Reduced Baseplate 

 

Figure 5-20: W14x176 Results, Reduced Baseplate 

5.5 Cantilever Height 

The effects of varying cantilever height, Z, were studied. It was found that reducing the 

cantilever height reduced the rotational stiffness of the connection. However, in the range of 
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values of greatest interest, the difference was slight. For instance, for Z = 60” to Z = 90”, the 

range in which the testing was performed, the difference was less than 10% the values of both 

specimens studied (5.5” and 13.5”). As the cantilever height increases, the ratio of shear 

deformation to rotational deformation increases. This is thought to increase the shear 

deformation in the column, reducing the rotational stiffness. As the cantilever height increases, 

however, the effects of shear deformation become negligible, and the connection behaves closely 

to a linear rotational spring of constant stiffness. For the cantilever heights studied in this 

research, which represent typical story heights, these values are relatively close to constant.  

 

Figure 5-21: W8x35 Results, Varying Cantilever Height 

5.6 Axial Load 

The effects of axial load on connection stiffness were investigated.  Figure 5-22 shows 

axial load decreasing the connection stiffness embedment depths greater than 3.5 inches. The 

cohesive elements are experiencing shear stresses many times higher than those experienced 
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under normal loading conditions. This may be leading, in turn, to decreased resistance to applied 

lateral loads at higher deformations. 

 

Figure 5-22: Effects of Axial Load, W8x35 (Cohesive Zone Based Model) 

5.7 Column Orientation 

A significant decrease in stiffness was observed when the column was oriented such that 

the weak-axis was resisting the bending loads. Figure 5-23 shows the results of Abaqus models 

for weak axis bending. Reasonable agreement with experimental data was obtained. These 

results suggest that the maximum stiffness value will be obtained at much lower embedment 

depths than strong-axis specimens will.  
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Figure 5-23: W8x35, Weak Axis Bending 

5.8 Phase III Predictions 

In Phase III of the testing program currently underway at BYU, additional laboratory 

specimens will be tested. Table 5-2 shows the test matrix of planned specimens. 

Table 5-2: Phase III Test Matrix 

Column Base Plate Anchor Bolts Base Block out

Specimen
Name

Size Thickness
(in)

ASTM
grade

Shear
Lug Qty DIA

(in) Grade Depth
(in) Depth (in)

D1 W14x53 2.25 A36 Yes 8 1 F1554 Gr 36 24 0
D2 W14x53 2.25 A36 Yes 8 1 F1554 Gr 36 24 8
D3 W14x53 2.25 A36 Yes 8 1 F1554 Gr 36 24 16
D4 W14x53 1.5 A36 Yes 4 1 F1554 Gr 36 24 16
F1 W10x77 3 A36 Yes 8 1 1/8 F1554 Gr 36 24 0
F2 W10x77 3 A36 Yes 8 1 1/8 F1554 Gr 36 24 8
F3 W10x77 3 A36 Yes 8 1 1/8 F1554 Gr 36 24 16
F4 W10x77 2 A36 Yes 4 1 1/8 F1554 Gr 36 24 16
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Finite element models were created of these specimens. The modeling was done with 

Econc = 3.6E6, corresponding to f’c = 4,000 psi. The depth of concrete below the column was 24”. 

The scripts were changed to calculate the embedment depth from the bottom of the baseplate, 

instead of the top of it; this accommodated the varying baseplate thicknesses more easily. All 

other parameters were left unchanged from default values. Anchor bolts, shear lugs, and other 

construction details (see Section 3.5) were neglected. Also, specimens D1 and F1 were not 

tested, since the model is not equipped to easily handle exposed baseplate connections. Table 5-3 

summarizes the expected stiffness values, which range from 111.8 k/in (Test F4), to 146.0 k/in 

(Test D3). 

 

Table 5-3: FEA Results for Phase III Specimens 

Specimen
Name

Column
Size

Baseplate
Thickness

[in.]

Block Out
Depth
[in.]

Predicted
Displacement

[in.]

Predicted
Stiffness
[k./in.]

Predicted
Rotational Stiffness

[k.*in./rad]
D1 W14X53 2.25 0
D2 W14X53 2.25 8 0.01830 136.7 8.80E+05
D3 W14X53 2.25 16 0.01783 146.0 9.40E+05
D4 W14X53 1.5 16 0.01802 142.0 9.14E+05
F1 W10X77 3 0
F2 W10X77 3 8 0.02080 129.2 8.32E+05
F3 W10X77 3 16 0.02146 119.0 7.66E+05
F4 W10X77 2 16 0.02200 111.8 7.20E+05
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6 CONCLUSIONS 

The objective of this study was to investigate the effects of key input variables on the 

rotational stiffness of shallowly embedded connections, using finite element simulations. These 

key variables include blockout/embedment depth, baseplate geometry, column size/orientation, 

grout/concrete modulus, and applied axial loading. 

All finite element models were created in Abaqus 6.14. Two parts were created, meshed, 

and assigned material properties. Each part was instanced and was assigned constraints, contact 

properties, boundary conditions, and loads that represented the original laboratory conditions; 

cohesive zone modeling represented the bond between the concrete and steel. The model was 

then submitted to Abaqus/Standard for processing. After processing, the displacement at the 

point of applied load was queried, and the connection stiffness was calculated. Modeling was 

automated with the use of Python scripts.  

The behavior of the connection is highly sensitive to the contact method used in the finite 

element solver. Three different connection types were investigated: a tied or one part model; a 

contact-based model; and a cohesive-zone based model. The tied model gives unrealistically 

high values connection stiffness values. Although this provides a theoretical upper bound on 

stiffness values, it does not accurately reflect the expected connection behavior. A contact-based 

model, using a hard pressure-overclosure relationship, gives stiffness values that are reasonably 
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close to experimental results, but do not show increasing stiffness with increasing embedment 

depth. Cohesive zone-based models showed stiffness values increasing with embedment depth. 

By calibrating the pressure-overclosure relationship in cohesive zone models, the elastic stiffness 

values were simulated to within 27% error. 

The effects of baseplate geometry on stiffness decrease with increasing embedment 

depth. As the embedment depth increases, the overturning moment is transferred increasingly via 

the column bearing on concrete, and less through the baseplate bearing on the concrete. 

Therefore, the baseplate’s contribution to the stiffness decreases. This effect is greater for thicker 

baseplates. In the case of very thick baseplates, increasing the baseplate’s embedment depth may 

actually cause the connection to lose stiffness; as stiffness from the baseplate bearing mechanism 

decreases, the stiffness afforded by the column bearing mechanism does not increase to match. 

This agrees with the observations from Grilli (2015) of a decreased stiffness with increasing 

embedment length.  

It was found that the rotational stiffness of the connections does not vary with the 

cantilever height for typical story heights. Tests were performed for heights from 30” to 150”. 

Although rotational stiffness is decreased for very short columns, the rotational stiffness is not 

affected greatly at heights of 80” or more. This means that the method of modeling connections 

as rotational springs acting at the top of the slab is viable as long, provided the cantilever height 

is large enough.  
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6.1 Future Research 

 Significant possibilities exist for future research to both broaden and to refine this 

investigation. These possibilities exist in the realm of both additional numerical modeling, and 

additional physical testing to verify the results of the numerical models. 

 Additional FEA models can be developed which would serve to expand and broaden this 

research. It would be useful to discover the response of the connection once it has left the linear 

region of its response, both in terms of stiffness and strength. Further research could be 

performed to illuminate the inability of current models to match the predicted stiffness values for 

deeper embedment depths with strong-axis bending. The nonlinear responses in the early stages 

of many of Barnwell’s specimens suggest that there may be material nonlinearity even at lower 

loading. Abaqus has significant capabilities for nonlinear loading patterns which were not 

explored in this research. In addition to relatively simple elasto-plastic models, more exotic 

material properties exist which could model concrete more precisely. For instance, “Concrete 

Damaged Plasticity”, “Concrete Smeared Cracking”, and “Cracking Model for Concrete” models 

accept a variety of inputs that correspond to the precise physical properties of the concrete, and 

could be carefully calibrated to provide results that match experimental data. With proper 

calibration, these models could generate useful data beyond the initial tangent stiffness, including 

stiffness characterizations of the connection into the nonlinear, post-cracking regime. 

User-defined interaction types can be created in Abaqus, to model more exotic 

connection types. A connection type that behaves differently in tension than in compression – or 

that allows separation after a given amount of tensile force is applied – could be used to generate 

more accurate results. These could help model the physical and chemical adhesion between the 

steel and concrete more precisely.  
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APPENDIX A – MESH CONVERGENCE AND OTHER VALIDATION STUDIES 

This appendix will detail the results of the mesh convergence study and other supporting 

validation studies that were run in conjunction with this research. A number of key assumptions 

and simplifications were made in the model, and were verified through these studies. 

Mesh Convergence Study 

A mesh convergence study was performed to verify the accuracy of the numerical 

solutions. Unexpected behavior occurred, in that it appeared to reach convergence at a lower 

mesh density, but instead began converging to a different result after a certain threshold of mesh 

density was reached.  

The mesh convergence study was performed with a W8X35 shape, with embedment 

depths of 0.5, 1.5, and 3.5. These shallow embedment depths were chosen because the small 

amount of embedment depth, and the behavior of the embedment concrete above the baseplate, 

would be more sensitive to numerical irregularities, due to their small volume. Also, the smaller 

embedment depths meant that fewer nodes were required in the model, leading to faster compute 

times. The foundation size was reduced by half in both the x and y directions (~4x total volume 

reduction) to make the total number of elements more manageable; preliminary analysis (not 
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included) suggested that this would reduce the total overall stiffness effects by less than 2%, 

primarily because the zone of significant stress / deformation did not extend that far. 

The mesh sizes studied were 2.00, 1.50, 1.00; 0.75; 0.50; 0.25; and 0.20. The values for 

0.20 were taken as the exact solution, as further mesh refinement was judged to be impossible. 

The Mary Lou Fulton supercomputer at Brigham Young University was used to run the most 

refined mesh studies.  

 

Figure A-0-1: Mesh Convergence Results, Displacement Values 
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Figure A-0-2: Mesh Convergence Results, % Error, Displacement 

 

Figure A-0-3: Mesh Convergence Results, % Error, Stiffness 
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less error, and the case of maximum error was a specimen with embedment depth of 0.5”. In the 

case of 3.5” embedment, for example, the stiffness error is less than or equal to 4%. 

Recall that, due to Abaqus’ meshing algorithms, many elements had dimensions that 

varied from a 1” cube. Although divisions were made to minimize this, it was impossible in 

practice to ensure that every element was an exact cube. 

Also, it was attempted to create a non-uniform mesh in the foundation part so as to reduce 

the computational time, and minimize the increase in error. However, no method was determined 

that could be shown to reliably maintain solution accuracy and decrease computational load 

significantly. 

Foundation Size 

A study of connection stiffness’ sensitivity to slab size (see Figure A-0-4) suggested that 

the error associated with reducing the foundation size would be very slight. It was deemed 

prudent to accept this error in order to reduce the computational demand associated with a 

relatively fine mesh (0.5” typical). 
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Figure A-0-4: Sensitivity of Results to Slab Dimensions 
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Figure A-0-5: Model Linearity with W8x35 Shape 

 

Figure A-0-6: Model Linearity with W8x48 Shape 
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friction-based model instead of a contact-based model, with a  (coefficient of friction) of 0.57, 

not 0.50. However, the conclusions reached are deemed to be generally applicable. 

Boundary Conditions 

 

Figure A-0-7: Effect of Boundary Conditions 
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APPENDIX B – 2 DIMENSIONAL MODEL RESULTS 

A series of two dimensional models was generated in Abaqus to study the behavior of a 

perfectly tied connection in an effectively infinite foundation.  

The model was generated using several simplifying assumptions. First, the model was 

created in two dimensions, thus assuming a unit thickness and plane strain conditions. Also, a 

no-slip boundary between the column and the continuum was created. No stiffening base-plate 

was included. The continuum part was made sufficiently large that it simulated an infinite 

continuum. Thus, no (or negligible) additional stiffness was caused by boundary conditions at 

the continuum edge. The model was then subjected to a rigorous set of analyses and verification 

studies.  

It was found that flexural stiffness available in shallow-embedded connections will 

asymptotically approach an upper limit as the embed depth increases. The value of this upper 

limit of stiffness – as well as the rate at which it increases – is governed by the geometry of the 

column, and the material properties of the column and continuum. It was also found that a 

relatively small increase in embed depth can greatly increase flexural stiffness.  

Abaqus was used to investigate the case of a steel column, embedded a finite distance 

into a medium (which we refer to as a “continuum”) of theoretically infinite extent. In practice, 

the continuum would typically represent either a foundation or a pile cap, made of normal-
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simulate a perfectly stiff protruding section of beam. This was done so that, when we applied the 

lateral load, we could eliminate displacement caused by the deformation of the column above the 

connection, and instead quantify the amount of displacement caused only by the deformation and 

rotation at the connection itself. 

 After dividing the part and assigning material properties, the part was seeded and 

meshed. It was then instanced in the assembly; fixed boundary conditions were imposed at the 

bottom, left, and right borders of the continuum; and a 1-kip horizontal point load was applied at 

the top of the beam.  The job was then submitted to Abaqus/Standard for analysis. After the 

analysis was complete, the model was queried for the displacement at the point of applied load. 

The displacement value was recorded, and divided by the 1 kip of applied force, in order to 

determine the stiffness of the connection.  

 The foundation’s depth extended to 10x the column depth, and its width extended to 10x 

the column depth on either side of the column. The mesh size was 1.0 inch. Fixed boundary 

conditions were created on the sides and bottom of the foundation part. 

Parameters Studied 

 The first parameter studied, which was called  , was the ratio of the Young’s Modulus of 

the column, to the Young’s Modulus of the continuum. Thus, an  value of 3 would mean that 

the Young’s Modulus of the column would be 3 times larger than that of the continuum.  was 

evaluated at values of 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, and 10.0. Unreinforced concrete has an  of 

between 8 and 9 – therefore, our results with  = 10.0 are the most directly applicable to the case 

of unreinforced concrete. However,  has been varied to gain greater understanding of the 

sensitivity of connection stiffness to a change in . 
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 The second parameter, called , was the ratio of the column depth to the embed depth. 

For example, a  value of 3 means that the embedment depth was 3 times greater than the 

column depth; a column depth of 3 and a  value of 3 would mean that the column was 

embedded 9 inches into the continuum. Values of  that were studied ranged from 0 to 4.0, in 

increments of 0.1.  

 The third varied parameter was beam depth, d, which was explored at d = 8.0, 12.0, 18.0, 

and 30.0. 

 The following parameters remained constant in this investigation: 

Young’s Modulus (E) of the column: 29,000 ksi 

Protruding length (pL), or cantilever height, of the column: 80.0 inches 

Magnitude of the applied lateral load: 1 kip 

Poisson’s Ratio of all materials: 0.3 

Results and Analysis 

As embed depth (represented by ) increases, connection stiffness will increase 

asymptotically towards a maximum value. This maximum stiffness value varied depending on  

and d values, with greater values of  and d tending to increase the maximum stiffness.  

Figure B-0-2 shows results for  = 10.0. Figure B-0-3 shows the same results, normalized 

on the x- and y- axes by the models’ column depths and were maximum stiffness values, 

respectively.  Although the theoretical maximum is admittedly unobtainable (requiring an 

embedment depth = ), a close approximation was obtained at  = 4.0; additional analysis (not 

included) shows that stiffness values at  = 4.0 varied by less than 1% from values at  = 10.0. 
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Figure B-0-2: 2-Dimensional Results;  = 10.0 

 

Figure B-0-3: Normalized 2-Dimensional Results;  = 10.0 
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(since it represents a foundation that is actually stiffer than the steel column; as the column goes 

deeper, the connection actually loses stiffness). Maximum values are shown in Figure B-0-5, 

while minimum values are shown in Figure B-0-6. 

 

Figure B-0-4: Maximum Stiffness Values;   1.0 
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Figure B-0-5: Maximum Stiffness for Constant   1.0 

 

Figure B-0-6: Minimum Stiffness for Constant   1.0 
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 When  < 1.0 – that is, the continuum material is softer than the column – increasing the 

embedment depth will increase the connection stiffness, and the asymptotic value is a maximum. 

This relationship is reversed when  > 1.0: the column is less rigid than the surrounding material, 

increasing embedment causes stiffness to asymptotically approach a minimum value. When  = 

1.0, stiffness remains unchanged as embedment depth varies. 

Figure B-0-5 shows maximum stiffness values for constant  values, assuming varying 

column depths. In each case, the protruding column length = 80.0 inches, so rotational stiffness 

can be obtained by multiplying by pL2 = (80 in)2 = 6400 in2. 

 = 10.0 

Since the case of  = 10.0 most closely models the case of a steel beam embedded in 

concrete, it is worth noting the amount of stiffness available from even a relatively shallow 

embedment in this case. In the columns studied, at = 0.5, the connection reaches 53-60% of its 

available maximum stiffness. Higher values of , d, and/or  will increase this percentage even 

more. For example, if Beta is increased to 1.0, the connection reaches 73.7% of its maximum.  

 = 2.5  

 In these cases, as  increases, the rigidity of the continuum does so as well. This means 

that, in addition to the increase in absolute maximum stiffness, we also observe higher initial 

stiffness, and a faster convergence to that maximum stiffness value, as  approaches 1.0. 

 All other conclusions drawn in the case of  = 10.0 are applicable for these other cases. 

The process by which we will model our results is the same, and has been explained above. 
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Figure B-0-7: Percent Maximum Stiffness Reached 

 = 1.0 

When  is exactly equal to 1.0, there is no difference between the column and continuum 

materials. Therefore, the stiffness in every case is equal to the theoretical maximum/minimum 

value, and no plot is required. 

 = 0.4, 0.1 

 

 Results for the cases of  = 0.4 and  = 0.1 are shown in Figure B-0-8 and Figure B-0-9, 

respectively. 
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Figure B-0-8:  = 0.4 

 

Figure B-0-9:  = 0.1 
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Mesh Convergence Study 

A mesh convergence study was performed to determine the effects of mesh size on 

displacement results. The column studied had the following specific properties:  = 10.0,  = 1.0, 

d = 12 inches. 1 inch was chosen as the standard mesh size for the fine mesh. A 1-inch mesh size 

diverged less than 0.15%  from a 0.2-inch mesh (which was the minimum mesh size studied). 

Figure B-0-10 shows the results. 

 

Figure B-0-10: Results of Mesh Convergence Study 
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APPENDIX C – SINGLE PART, EXPOSED BASEPLATE MODEL 

To verify the accuracy of the rigidly tied models, a one piece model was created, with a 

zero-embedment depth. All procedures were followed identically to those of the rigidly tied 

model. However, instead of creating two distinct parts, only one was created. This part had no 

embedment depth, and the bottom of the baseplate was level with the top of the concrete slab. 

The model was a W8x35 shape, with 80.25” length in addition to the baseplate. Mesh density 

was refined once to check mesh convergence.  

The stiffness values were higher than those obtained with the rigid tie model (see Table 

C-0-1). These values were higher than believed to be theoretically possible (compare to Tryon, 

2016), as well as higher than the results obtained from experimental testing (Barnwell, 2015). 

Therefore, the investigation into this line of modeling was discontinued. However, it supports the 

conclusion that using a fully-fixed bond between the concrete and steel would not accurately 

simulate bond stiffness. 

Table C-0-1: Single part, Exposed Baseplate Results 

Mesh
Density

Displacement
[in.] Lateral Stiffness [k./in.]

0.5 5.600E 02 108.36
0.25 5.602E 02 108.18
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APPENDIX D – DESIGN JUSTIFICATION 

The following are MathCAD sheets with design justification for the W14x176 and W24x76 

baseplates. Both were designed by Kevin Hanks, P.E., to reflect typical practice for designing 

low-moment and high-moment connections. 
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Base Plate Design - for Concentric Axial Load
per AISC Steel Design Guide 1, section 3.1

Calculation by: Kevin N Hanks Date: 12 Jan 2016

-----------------------------------------------------------------------------------------------------------------
Given

Column
Column Size
Column
Height
(unbraced)
Steel Strength

≔Col “W14x176”
≔hcol 15

≔fy_col 50 ASTM A992 Steel ≔Ry 1.1

Base Plate
Width ≔N +2 0
Depth ≔B +2 0
Area ≔A1 =⋅N B 4

2

AB Location ≔f 4
Steel Strength ≔fy_bspl 36

≔n =――――
−B ⋅0.8 bf

2
5.72

≔m =――――
−N ⋅0.95 d

2
4.78

Concrete Base
Concrete Strength ≔f`c 4000

Concrete
Base Area

≔A2 ⋅4 A1 (Assumed)

Anchor Bolts
Material: ASTM F1554 Gr 36

Steel Yield Strength ≔fy_bolt 36
Steel Rupture Strength ≔fu_bolt 58

Total # of bolts ≔numb 4
Misc

Strength Reduction Factors ≔ϕsteel 0.90
≔ϕconc 0.65

Non-Commercial Use Only
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Step A: Determine the Design Case

=|
|
|
|
|
|
|
|

if

else if

else if

＝A2 A1

‖
‖ “Case I”

≥A2 ⋅4 A1
‖
‖ “Case II”

<<A1 A2 ⋅4 A1

‖
‖ “Case III”

“Case II”

Non-Commercial Use Only
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Step 1: Calculate the factored axial compressive load, Pu

Note: for this case, the factored axial load will be taken as the maximum 
compressive buckling strength of the column over its unbraced length.

Assume both top and bottom are "pin" connected
≔K 1.0

Slenderness
≔L hcol

=――
⋅K L

ry
44.776

Euler Buckling Stress

≔Fe =―――
⋅

2
E

⎛
⎜⎝
――

⋅K L

ry

⎞
⎟⎠

2
142.759

Critical stress (Flexural Buckling)

≔Fcr =
|
|
|
|
|
|
|

|

if

else

≤――
⋅K L

ry
⋅4.71

‾‾‾‾‾
――
E

fy_col
‖
‖
‖ ⋅

⎛
⎜⎝0.658

――
fy_col

Fe

⎞
⎟⎠ fy_col

‖
‖ ⋅0.877 Fe

43.182

Nominal Compressive Strength

≔Pn =⋅Fcr Ag 2237

Design Axial Load on the Column Base

≔Pu =⋅Ry Pn 2460.5

Step 2: Calculate the required base plate area

≔A1_req =――――――
Pu

⋅⋅⋅2 ϕconc 0.85 f`c
3.866

2

≔A1_actual =A1 4
2

Non-Commercial Use Only
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Step 3: Optimize the Base Plate Dimensions, N & B

≔Nopt =+‾‾‾‾‾A1_req ―――――
−⋅0.95 d ⋅0.8 bf

2
24.534

≔Bopt =――
A1_req

Nopt

22.69

Note that this represents the minimum required base plate size for 
strength requirements - geometric constrains may govern the size 
of the base plate
Return to page 1 and adjust base plate dimensions

Step 4: Calculate the required base plate thickness.

≔Pp =⋅⋅f`c 2 A1 4608

≔X =min
⎛
⎜
⎜⎝

,⋅
⎛
⎜
⎜⎝

―――
⋅⋅4 d bf

⎛⎝ +d bf⎞⎠
2

⎞
⎟
⎟⎠

―――
Pu

⋅ϕsteel Pp
1.0

⎞
⎟
⎟⎠

0.593

≔λ =min
⎛
⎜
⎜⎝

,――――
⋅2 ‾‾X

+1 ‾‾‾‾‾−1 X

1.0
⎞
⎟
⎟⎠

0.94

≔m =――――
−N ⋅0.95 d

2
4.78

≔n =――――
−B ⋅0.8 bf

2
5.72

≔λn` =⋅λ ―――
‾‾‾‾⋅d bf

4
3.632

≔lmax =max (( ,,m n λn`)) 5.72

≔tmin =⋅lmax

‾‾‾‾‾‾‾‾‾‾‾‾‾‾
――――――

⋅2 Pu

⋅⋅⋅ϕconc fy_bspl B N
3.456

Step 5: Determine the anchor rod size and location

For gravity-only loads, anchor rods need only 
fulfil OSHA minimum requirements

Use (4) 3/4" ASTM F1554 Gr 36 rods

Non-Commercial Use Only
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Base Plate Design - for large Moment
per AISC Steel Design Guide 1, section 3.4

Calculation by: Kevin N Hanks Date: 12 Jan 2016

-----------------------------------------------------------------------------------------------------------------
Given

Column
Column Size
Column
Height

Steel Strength

≔Col “W24x76”
≔hcol 15

≔fy_col 50 ASTM A992 Steel ≔Ry 1.1

Base Plate
Width
Depth
AB Location
Steel Strength

≔N +2 10
≔B +1 8

≔f +1 2.5
≔fy_bspl 36

≔n =――――
−B ⋅0.8 bf

2
6.404

≔m =――――
−N ⋅0.95 d

2
5.648

Concrete Anchor Bolts
≔f`c 4000 Material: ASTM F1554 Gr 36

≔fy_bolt 36
≔fu_bolt 58
≔numb 8

Non-Commercial Use Only



www.manaraa.com

Step 1: Determine the Axial and Moment Load on Column Base 

≔Pr =⋅hcol Wcol 1140 (This design assumes no additional 
gravity load on the column)

≔Mr =⋅⋅⋅1.1 Ry fy_col Zx 1008.3 ⋅ (See AISC 341 sec. 8.5c.(2).(a)

Step 2: Pick a trial base plate size ( )

(defined previously)

=N 34
=B 20

Step 3: Determine the equivalent eccentricity ( ), and the critical 
eccentricity (ecrit)

≔e =――
Mr

Pr
884.5

≔ecrit =−―
N

2
―――
Pr

⋅2 qmax
16.994

=|
|
|
|

|

if

else

≥e ecrit
‖
‖ “GOOD!”

‖
‖ “NO GOOD!”

“GOOD!”

Step 4: Determine the equivalent bearing length ( ) and the 
tensile force in the anchor rods (  ).

≔Y =+
⎛
⎜⎝

+f ―
N

2

⎞
⎟⎠

⋅
1

−1
⎡
⎢⎣

⎤
⎥⎦

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
−

⎛
⎜⎝

+f ―
N

2

⎞
⎟⎠

2

――――
⋅⋅2 Pr (( +e f))

qmax

58.298
4.702

⎡
⎢⎣

⎤
⎥⎦

≔Y =|
|
|
|
|
|
|

if

else

<<0 Y
0

N

‖
‖‖
Y

0

‖
‖‖
Y

1

4.702

≔T =−⋅qmax Y Pr 414.537

Non-Commercial Use Only
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Step 5: Determine the required minimum base plate thickness at 
the bearing and the tension interfaces.

Bearing Interface:

≔tp_req_b =if

else

≥Y max (( ,m n))
‖
‖
‖‖

⋅⋅1.5 m
‾‾‾‾‾‾
―――
fp_max

fy_bspl

‖
‖
‖
‖‖

⋅2.11

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

――――――

⋅⋅fp_max Y
⎛
⎜⎝

−m ―
Y

2

⎞
⎟⎠

fy_bspl

2.911

Tension Interface

≔tp_req_t =⋅2.11

‾‾‾‾‾‾‾‾‾‾‾‾

―――――

⋅T
⎛
⎜⎝

+−f ―
d

2
―
tf

2

⎞
⎟⎠

⋅B fy_bspl
2.722

Take maximum of the two:

≔tp_req =max ⎛⎝ ,tp_req_b tp_req_t⎞⎠ 2.911

Step 6: Determine the anchor rod size appropriate for the tensile loading
(

Number of bolts in tension

≔Nb_t =――
numb

2
4

Tensile Force in each bolt 

≔Tu =――
T

Nb_t

103.634

required diameter ≔ϕ 0.75

≔Dreq =
‾‾‾‾‾‾‾‾‾‾
――――

⋅4 Tu

⋅⋅ϕ fu_bolt
1.742

Non-Commercial Use Only
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APPENDIX E – CODE FOR MODEL GENERATION AND ANALYSIS 

The code to generate the models was written exclusively in the programming language 

Python. 

A wrapper script, called RunMe.py was called from the command line to initiate the 

process. The RunMe script 1) sent a command to Abaqus/CAE to run Preprocessing.py, which 

automatically generated the models 2) opened multiple threads to submit all the job files to 

Abaqus/Standard for processing, and 3) sent a command to Abaqus/CAE to run 

Postprocessing.py, which opened the models, extracted the needed information, and deposited it 

into an Excel (.csv) database for manual analysis. Both Preprocessing.py and Postprocessing.py 

had several additional layers of subroutines that facilitated both automatic model generation, and 

code development. 

At the start of RunMe.py, Preprocessing.py, and Postprocessing.py, a header was created 

containing all of the information concerning the variables to be run. Up to two variables at a time 

(“PrimaryParameter” and “SecondaryParameter”) can be varied, as well as embedment depths. 

The choices of values of the variables were contained in “PrimaryParameterList” and 

“SecondaryParameterList,” while the embedment depths were contained in “EmbedDepthsList.” 

The scripts generate and analyze models containing every combination of variables and 
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embedment depths. The headers at the top of all three scripts must be identical, or the analysis 

will behave in unexpected ways or crash. 

Preprocessing Tasks 

 The Preprocessing.py script was responsible for generating all of the models. To do this, 

it first generated all of the necessary input variables for Abaqus/CAE for each model, including 

variables defining what model configuration to use. These variables were stored in a dictionary 

called “DataArray”. The variables in DataArray were updated after every model was run, to 

reflect the necessary variables for each separate model. (This was done to ease code 

development; since several dozen variables were required to define each model, and they were 

often changing as the model grew in complexity, it became cumbersome to pass every variable 

through several layers of subroutines by hand. Therefore, by defining the DataArray dictionary, 

an arbitrary number of variables could be defined without concern for raising errors or forgetting 

to pass needed arguments to subroutines.) 

After DataArray was created or updated, Preprocessing.py called the Preprocessing 

subroutine (not to be confused with Preprocessing.py, the script which calls it), which was 

located in the Scripts.py library. The Preprocessing routine unpacked the DataArray dictionary 

into variables that could be referenced (by the Preprocessing routine) without having to reference 

the DataArray dictionary itself. For example, the variable “BasePlate” (a Boolean specifying if 

the model was to include a baseplate or not) was defined in the Preprocessing.py script as 

“DataArray[‘BasePlate’]”, and passed to the Preprocessing subroutine. When it reached  the 

Preprocessing subroutine, a loop over every entry in the dictionary (“for key in 
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DataArray.keys(): exec('%s = DataArray["%s"]' %(key, key))  ) unpacked it, thus allowing it to 

be referenced simply as “BasePlate” from then on.  

Once DataArray is unpacked, a number of assertion lines ensure that certain disallowed 

combinations of variables are not accidentally sent to be processed. These combinations, if 

accidentally passed to the script, could cause the model to be created in unexpected and incorrect 

ways, or perhaps even crash Abaqus/CAE as it builds the model.  

After the assertion lines, the “Mdb()” command creates and opens a new model database 

file. Once this is done, a series of subroutines is called, each of which accomplishes one 

additional step in building the model in Abaqus/CAE. For example, CreateModel creates a new 

model within the database file; ColumnCreation creates a column part in the model file 

according to the applicable parameters within DataArray; DivideColumn divides the column part 

into several different cells to faciliatate later meshing; and so forth. The same unpacking loop as 

before appears in each subroutine. 

After all of the specified subroutines have been run to create the model, an input file is 

created, which converts the model into a “.inp” file which can be read directly by 

Abaqus/Standard when processing the model. Finally, the model database was saved so that it 

can be opened later during postprocessing. 

Model Processing 

At this point, control reverts back to the top level script, RunMe.py. RunMe opens up 

multiple threads, each one of which takes one “.inp” file and submits it to Abaqus/Standard for 

processing. Typically, more jobs are submitted than there are licenses available, which results in 
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most jobs waiting in a queue to be processed. There is no apparent way of predicting what order 

the jobs will run in.  

Postprocessing Tasks 

The postprocessing sequence is structured identically to the preprocessing sequence: 

RunMe.py calls a script called Postprocessing.py in Abaqus/CAE, which assembles all the 

variables into DataArray, and repeatedly calls a subroutine called “Postprocessing” from the 

Scripts.py library. Indeed, Postprocessing.py is actually a copy of Preprocessing.py, with the 

only difference being which subroutine (Preprocessing or Postprocessing) it calls from 

Scripts.py. 

The Postprocessing subroutine in turn runs a series of subroutines which: opens the 

model database file; obtains nodal displacement data at the point of the applied load; outputs it 

into an XY Data report inside of Abaqus; exports this XY Data report into a “.output” file; 

scrapes the nodal displacement value from the .output file; calculates the connection’s linear 

stiffness and the connection’s rotational stiffness; and outputs these three values to a .csv 

database which can be read by Microsoft Excel. Graphing and analysis was all done manually 

with the information now available in the .csv file. 

Scripts 

The code for RunMe.py, Preprocessing.py, Postprocessing.py, and Scripts.py all follow. 

For analysis on the supercomputer, additional wrapper scripts (written with Linux bash 

commands) were required, which are not included here. 
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J:\Scripts\RunMe.py Monday, February 29, 2016 1:45 PM

#RunMe.py

########################

#Copy/paste from here...

Linux = 1

SuperComputing = 0

ModelType = 'CohesiveZone'

BaseplateType = 'Square' #BaseplateType Possibilities: 'Square', 'Rectangle', 'Reduced', 'None'

PrimaryParameter = 'BCs'

PrimaryParameterList = ['Bottom', 'Sides']

SecondaryParameter = 'MeshSize'

SecondaryParameterList = [0.5]

EmbedDepthsList = [1.5, 5.5, 9.5, 13.5, 17.5]

# EmbedDepthsList = [1.5]

#...to here           #

#######################

###############################

#Initialization & bookkeeping.#

###############################

if SuperComputing: assert Linux

import os

import multiprocessing

def __TimeStamp():

global TimeStamp

from datetime import datetime

month = str(datetime.now().month)

day = str(datetime.now().day)

year = str(datetime.now().year)

hour = str(datetime.now().hour)

minute = str(datetime.now().minute)

second = str(datetime.now().second)

return '{0}-{1}-{2}_{3}-{4}-{5}'.format(month, day, year, hour, minute, second)

from string import join

if Linux:

if SuperComputing:

Heading = '/fslhome/trevdna/'

os.chdir('/fslhome/trevdna/compute/Models')

os.system('module load abaqus/6.14')

else:

Heading = '/fsc/trevdna/'

os.chdir(Heading + 'groups/researchtaj/scratch/ColumnModels_CohesiveZone/')

else: #Windows

Heading = 'J:/'

-1-
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J:\Scripts\RunMe.py Monday, February 29, 2016 1:45 PM

FilePath = Heading + '/Scripts/'

if Linux:

guiCaps = 'GUI'

else:

guiCaps = 'gui'

jobs = []

def __removeDot(str1):

return join(str(str1).split('.'),'point')

###############

#Preprocessing#

###############

# Note: no multithreading for pre- or post-processing.

os.system('abaqus cae no%s=%sPreprocessing' %(guiCaps, FilePath))

#############

#Processing.#

#############

numModels = len(PrimaryParameterList) * len(SecondaryParameterList) * len(EmbedDepthsList)

if Linux:

maxCPUS = multiprocessing.cpu_count() * 1/2

else:

maxCPUS = multiprocessing.cpu_count()

maxProcesses = max(numModels, maxCPUS / 4)

def Processing(argsList):

PrimaryParameter = argsList[0]

Param1 = argsList[1]

SecondaryParameter = argsList[2]

Param2 = argsList[3]

eL = argsList[4]

ModelName = '%s%s_%s%s_eL%s' %(PrimaryParameter, __removeDot(Param1), SecondaryParameter,

__removeDot(Param2), __removeDot(eL))

print(ModelName + ' processing began at ' + __TimeStamp())

os.system("abaqus job=%s cpus=4 interactive ask_delete=OFF" %ModelName)

return

pool = multiprocessing.Pool(processes=maxProcesses)

args = []

for Param1 in PrimaryParameterList:

for Param2 in SecondaryParameterList:

for eL in EmbedDepthsList:

args += [[PrimaryParameter, Param1, SecondaryParameter, Param2, eL]]

pool.map(Processing, args)

#Note: There's no guarantee on which model file will run first. It seems to be whichever 

process can hop to the front of the line first.

-2-
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J:\Scripts\RunMe.py Monday, February 29, 2016 1:45 PM

################

#Postprocessing#

################

os.system('abaqus cae no%s=%sPostprocessing' %(guiCaps, FilePath))

print('Done!')

-3-
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J:\Scripts\Preprocessing.py Monday, February 29, 2016 1:46 PM

########################

#Copy/paste from here...

Linux = 1

SuperComputing = 0

ModelType = 'CohesiveZone'

BaseplateType = 'Square' #BaseplateType Possibilities: 'Square', 'Rectangle', 'Reduced', 'None'

PrimaryParameter = 'BCs'

PrimaryParameterList = ['Bottom', 'Sides']

SecondaryParameter = 'MeshSize'

SecondaryParameterList = [0.5]

EmbedDepthsList = [1.5, 5.5, 9.5, 13.5, 17.5]

# EmbedDepthsList = [1.5]

#...to here           #

#######################

ScriptType = 'Preprocessing'

#######################

#Initialization tasks.#

#######################

if SuperComputing: assert Linux

global DataArray

import os

#Supercomputing Linux, normal Linux, or Windows.

if Linux:

if SuperComputing:

Heading = '/fslhome/trevdna/'

else:

Heading = '/fsc/trevdna/'

else:#Windows

Heading = 'J:/'

if SuperComputing:

os.chdir('/fslhome/trevdna/compute/Models')

else:

os.chdir(Heading + 'groups/researchtaj/scratch/ColumnModels_CohesiveZone/')

#Import functions

import csv

from string import join

from sys import path

from math import sqrt

path.append(Heading + 'Scripts/')

if ScriptType == 'Preprocessing':

from Scripts import Preprocessing

# pass

elif ScriptType == 'Postprocessing':

from Scripts import Postprocessing

else:

-1-
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J:\Scripts\Preprocessing.py Monday, February 29, 2016 1:46 PM

raise TypeError('Unexpected Script Type.')

#Dictionary with part names and properties

PropertiesDict = {}

ShapesDatabase = Heading + 'Research/4-InputDatabases/ShapesDatabase_Custom.csv'

if SuperComputing: ShapesDatabase = Heading + 'InputDatabases/ShapesDatabase_Custom.csv'

with open(ShapesDatabase) as csvfile:

quoting = csv.QUOTE_NONNUMERIC

reader = csv.reader(csvfile)

for row in reader:

PropertiesDict[row[0]] = row[3], row[4], row[6], row[8], \

row[11], row[13], row[18], row[22]

'''0: bA - beam Area

1: db - beam depth 

2: bf - Flange width

3: tw - Thickness of web

4: tf - thickness of flange

5: k(des) - smallest possible k value

6: Ix - Strong moment of inertia

7: Iy - Weak moment of inertia'''

WorkingDir = os.getcwd()

def __removeDot(str1):

return join(str(str1).split('.'),'point')

###########################################################################

#Create dictionary with needed information to import into Abaqus routines.#

###########################################################################

DataArray = {}

#Metadata

DataArray['ModelType'] = ModelType #Contact type

DataArray['TwoD_ThreeD'] = False #Does it taper to 2D from 3D?

DataArray['OneD_TwoD'] = False

DataArray['PrimaryParameter'] = PrimaryParameter

DataArray['SecondaryParameter'] = SecondaryParameter

DataArray['ColumnType'] = 'IBeam' #'IBeam', 'Rectangle', or 'Square'

# DataArray['CohesiveZone'] = False

#Setup Parameters (Default)

DataArray['StrongOrient'] = True

DataArray['BasePlate'] = True

def Define_ModelType_BasedData():

if DataArray['ModelType'] == 'Friction' or DataArray['ModelType'] == 'CohesiveZone':

DataArray['OnePartModel'] = False

elif DataArray['ModelType'] == 'RigidTie': #RigidTie, Tied, whatever I called it that day.

DataArray['OnePartModel'] = True

if DataArray['OnePartModel']:

DataArray['ColumnPart'], DataArray['FoundationPart'] = 'CombinedPart', 'CombinedPart'

else:

DataArray['ColumnPart'], DataArray['FoundationPart'] = 'Column', 'Foundation'

-2-
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J:\Scripts\Preprocessing.py Monday, February 29, 2016 1:46 PM

if DataArray['ModelType'] == 'CohesiveZone':

DataArray['CohesiveZone'] = True

# DataArray['ColumnPart'], DataArray['FoundationPart'] = 'CombinedPart-CZ', 

'CombinedPart-CZ'

else:

DataArray['CohesiveZone'] = False

Define_ModelType_BasedData()

DataArray['BlockoutConcrete'] = False

#File paths

outputFileFolder = Heading + 'Research/1-ThesisResearch/'

if SuperComputing: outputFileFolder = Heading + 'RawOutputFiles/'

DataArray['outputFile'] = '%s%s%s.csv' %(outputFileFolder,PrimaryParameter,SecondaryParameter)

###Column properties###

#Square/rectangular column properties

# DataArray['cX'] = 6.855

# DataArray['cY'] = 6.855

DataArray['StrongAxis'] = True

DataArray['ColumnName'] = 'W8X35'

def Define_ColumnName_BasedData():

global DataArray

DataArray['db'] = float(PropertiesDict[DataArray['ColumnName']][1])

DataArray['tw'] = float(PropertiesDict[DataArray['ColumnName']][3])

DataArray['bf'] = float(PropertiesDict[DataArray['ColumnName']][2])

DataArray['tf'] = float(PropertiesDict[DataArray['ColumnName']][4])

if DataArray['ColumnType'] == 'IBeam':

DataArray['Ix'] = float(PropertiesDict[DataArray['ColumnName']][6])

DataArray['Iy'] = float(PropertiesDict[DataArray['ColumnName']][7])

elif DataArray['ColumnType'] == 'Square' or DataArray['ColumnType'] == 'Rectangle':

DataArray['Ix'] = float(cX*cY**3/12)

DataArray['Iy'] = float(cY*cX**3/12)

k = float(PropertiesDict[DataArray['ColumnName']][5])

DataArray['fr'] = k - DataArray['tf']

db, tw, bf, tf = DataArray['db'], DataArray['tw'], DataArray['bf'], DataArray['tf']

DataArray['SA'] = db*tw+2*bf*tf-2*tf*tw #Surface Area / cross sectional area

Define_ColumnName_BasedData()

#Baseplate properties

baseWidth = 13.0

baseWidthX = baseWidth - 2.0

baseWidthY = baseWidth

baseDepth = 1.0

DataArray['BaseplateType'] = BaseplateType #BaseplateType Possibilities: 'Square', 'Rectangle', 

'Reduced', 'None'

def Define_BaseplateType_BasedData(): #Also includes changes to baseplate dimensions based on 

column size 

global baseWidth, baseWidthX, baseWidthY

if DataArray['ColumnName'] == 'W14X176': #Patches for individual test cases, not a 

-3-
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universal solution here.

baseWidth = 24.0

elif DataArray['ColumnName'] == 'W24X76':

assert BaseplateType == 'Rectangle'

# baseWidth = 39.0

baseWidthX = 20.0

baseWidthY = 34.0

else:

# DataArray['BaseplateType'] = BaseplateType

baseWidth = 13.0

baseWidthX = baseWidth - 2.0

baseWidthY = baseWidth

if DataArray['BaseplateType'] == 'Square':

DataArray['BasePlate'] = True

DataArray['baseWidthX'] = baseWidth

DataArray['baseWidthY'] = baseWidth

DataArray['baseDepth'] = baseDepth

elif DataArray['BaseplateType'] == 'Rectangle':

DataArray['BasePlate'] = True

DataArray['baseWidthX'] = baseWidthX

DataArray['baseWidthY'] = baseWidthY

DataArray['baseDepth'] = baseDepth

elif DataArray['BaseplateType'] == 'Reduced':

DataArray['BasePlate'] = True

DataArray['baseWidthX'] = DataArray['bf']

DataArray['baseWidthY'] = DataArray['db']

DataArray['baseDepth'] = baseDepth

elif DataArray['BaseplateType'] == 'None':

DataArray['BasePlate'] = False

# DataArray['baseWidthX'] = 0.0 #Should not be necessary

# DataArray['baseWidthY'] = 0.0 #Should not be necessary

DataArray['baseDepth'] = 0.0

if DataArray['BaseplateType'] <> 'None':

assert DataArray['baseWidthX'] >= DataArray['bf'] #Only valid in the case of 

strong-axis bending, FYI.

assert DataArray['baseWidthY'] >= DataArray['db']

Define_BaseplateType_BasedData()

#Foundation properties

DataArray['mwX'] = 42 #Medium (foundation) width in x-direction

DataArray['mwY'] = 42 #Medium (foundation) width in y-direction

DataArray['BCs'] = 'Bottom'

# DataArray['blockoutSize'] = 17.0

#Column lengths

DataArray['pL'] = 80.25 #Protruding

DataArray['eL'] = 5.5 #Embedded

def Define_eL_BasedData():

global DataArray

DataArray['cL'] = DataArray['eL'] + DataArray['pL'] #Column length: embedded + protruding

DataArray['cmd'] = 12.0 + DataArray['eL'] + DataArray['baseDepth'] + 1.5 #Default: 20.0
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Define_eL_BasedData()

#Moduli and PRs; concrete strength

DataArray['EmbeddedSteelMod'] = 29000000.0

DataArray['NormalConcreteMod'] = 3500000.0

DataArray['SteelPr'] = 0.27 #Poisson's ratio, for steel

DataArray['ConcretePr'] = 0.15 #pr for concrete

DataArray['CohesiveMod'] = 5E4 #The pseudomodulus that is used in the cohesive zone material.

DataArray['CohesiveDepth'] = 0.01

DataArray['offsetVal'] = DataArray['CohesiveDepth']

def Define_EmbeddedSteelMod_BasedData():

global DataArray

DataArray['ProtrudingSteelMod'] = DataArray['EmbeddedSteelMod']

Define_EmbeddedSteelMod_BasedData()

def Define_NormalConcreteMod_BasedData():

global DataArray

DataArray['BadConcreteMod'] = DataArray['NormalConcreteMod']

DataArray['GroutMod'] = DataArray['NormalConcreteMod']

strength = (float(DataArray['NormalConcreteMod'])/57000)**2 #For reference

Define_NormalConcreteMod_BasedData()

#Load and friction values

# DataArray['DistLoad'] = True #Is this functioning as a distributed load (as opposed to a 

point load)?

def Define_DistLoad_BasedData():

global DataArray

DataArray['DistLoad'] = not DataArray['StrongAxis'] #Is this functioning as a distributed 

load (as opposed to a point load)?

Define_DistLoad_BasedData()

DataArray['load'] = 1000 #Pounds

DataArray['AxialLoad'] = 0 #Pounds

DataArray['NoFriction'] = False

DataArray['Friction'] = 0.50

DataArray['NoSeparation'] = False

#Mesh sizes

DataArray['MeshSize'] = 0.5

DataArray['UniformMesh'] = True

DataArray['SquareMesh'] = True

DataArray['QuadMesh'] = False

################################

#Run the bloody script already!#

################################

#Loops

#Note: All the assertion lines in here are to make sure you don't try to vary two parameters 

together that would result in bugs if you run them together.

#If you really want to run them together, code it yourself, and double (triple) check the code 

actually behaves like you are expecting.
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for Param1 in PrimaryParameterList:

DataArray['Param1'] = Param1

DataArray[PrimaryParameter] = Param1

for Param2 in SecondaryParameterList:

DataArray['Param2'] = Param2

DataArray[SecondaryParameter] = Param2

for eL in EmbedDepthsList:

DataArray['eL'] = eL

######Update properties that are based on variables that may have changed.#######

if 'ColumnName' in [PrimaryParameter, SecondaryParameter]:

assert DataArray['ColumnType'] == 'IBeam'

Define_ColumnName_BasedData()

if 'EmbeddedSteelMod' in [PrimaryParameter, SecondaryParameter]:

Define_EmbeddedSteelMod_BasedData()

if 'NormalConcreteMod' in [PrimaryParameter, SecondaryParameter]:

Define_NormalConcreteMod_BasedData()

if 'OnePartModel' in [PrimaryParameter, SecondaryParameter]:

Define_ModelType_BasedData()

if 'ModelType' in [PrimaryParameter, SecondaryParameter]: Define_ModelType_BasedData

()

if 'StrongAxis' in [PrimaryParameter, SecondaryParameter]: Define_DistLoad_BasedData

()

if 'BaseplateType' in [PrimaryParameter, SecondaryParameter] or 'ColumnName' in [

PrimaryParameter, SecondaryParameter]:

# assert 'ColumnName' not in [PrimaryParameter, SecondaryParameter]

Define_BaseplateType_BasedData()

if 'baseDepth' in [PrimaryParameter, SecondaryParameter]: #Patch: baseDepth 

should be redefined to prevent it from being overwritten by the default baseDepth

if DataArray['BasePlate'] <> False:

if PrimaryParameter == 'baseDepth': DataArray['baseDepth'] = Param1

elif SecondaryParameter == 'baseDepth': DataArray['baseDepth'] = Param2

if DataArray['ColumnType'] == 'Square' or DataArray['ColumnType'] == 'Rectangle':

assert DataArray['StrongAxis'] == True

if 'StrongOrient' in [PrimaryParameter, SecondaryParameter]: DataArray['DistLoad'] =

not DataArray['StrongAxis'] #Is this functioning as a distributed load (as opposed 

to a point load)?

Define_eL_BasedData() #This goes after BaseplateType because BaseplateType affects 

baseDepth, which in turn affects cmd, which is in eL_BasedData

#Model Name - depends on Param1, Param2, and eL.

ModelName = '%s%s_%s%s_eL%s' %(PrimaryParameter, __removeDot(Param1),

SecondaryParameter, __removeDot(Param2), __removeDot(eL))

#Other metadata that depends on ModelName.

DataArray['ModelName'] = ModelName

DataArray['mdbFileName'] = WorkingDir + '/' + ModelName

DataArray['odbFileName'] = WorkingDir + '/' + ModelName + '.odb'

print(DataArray)

######Run the script, already!#########

if ScriptType == 'Preprocessing':

# from Scripts import Preprocessing

Preprocessing(DataArray)

elif ScriptType == 'Postprocessing':

# from Scripts import Postprocessing
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Postprocessing(DataArray)

else:

raise TypeError('Unexpected Script Type.')
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########################

#Copy/paste from here...

Linux = 1

SuperComputing = 0

ModelType = 'CohesiveZone'

BaseplateType = 'Square' #BaseplateType Possibilities: 'Square', 'Rectangle', 'Reduced', 'None'

PrimaryParameter = 'BCs'

PrimaryParameterList = ['Bottom', 'Sides']

SecondaryParameter = 'MeshSize'

SecondaryParameterList = [0.5]

EmbedDepthsList = [1.5, 5.5, 9.5, 13.5, 17.5]

# EmbedDepthsList = [1.5]

#...to here           #

#######################

ScriptType = 'Postprocessing'

#######################

#Initialization tasks.#

#######################

if SuperComputing: assert Linux

global DataArray

import os

#Supercomputing Linux, normal Linux, or Windows.

if Linux:

if SuperComputing:

Heading = '/fslhome/trevdna/'

else:

Heading = '/fsc/trevdna/'

else:#Windows

Heading = 'J:/'

if SuperComputing:

os.chdir('/fslhome/trevdna/compute/Models')

else:

os.chdir(Heading + 'groups/researchtaj/scratch/ColumnModels_CohesiveZone/')

#Import functions

import csv

from string import join

from sys import path

from math import sqrt

path.append(Heading + 'Scripts/')

if ScriptType == 'Preprocessing':

from Scripts import Preprocessing

# pass

elif ScriptType == 'Postprocessing':

from Scripts import Postprocessing

else:
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raise TypeError('Unexpected Script Type.')

#Dictionary with part names and properties

PropertiesDict = {}

ShapesDatabase = Heading + 'Research/4-InputDatabases/ShapesDatabase_Custom.csv'

if SuperComputing: ShapesDatabase = Heading + 'InputDatabases/ShapesDatabase_Custom.csv'

with open(ShapesDatabase) as csvfile:

quoting = csv.QUOTE_NONNUMERIC

reader = csv.reader(csvfile)

for row in reader:

PropertiesDict[row[0]] = row[3], row[4], row[6], row[8], \

row[11], row[13], row[18], row[22]

'''0: bA - beam Area

1: db - beam depth 

2: bf - Flange width

3: tw - Thickness of web

4: tf - thickness of flange

5: k(des) - smallest possible k value

6: Ix - Strong moment of inertia

7: Iy - Weak moment of inertia'''

WorkingDir = os.getcwd()

def __removeDot(str1):

return join(str(str1).split('.'),'point')

###########################################################################

#Create dictionary with needed information to import into Abaqus routines.#

###########################################################################

DataArray = {}

#Metadata

DataArray['ModelType'] = ModelType #Contact type

DataArray['TwoD_ThreeD'] = False #Does it taper to 2D from 3D?

DataArray['OneD_TwoD'] = False

DataArray['PrimaryParameter'] = PrimaryParameter

DataArray['SecondaryParameter'] = SecondaryParameter

DataArray['ColumnType'] = 'IBeam' #'IBeam', 'Rectangle', or 'Square'

# DataArray['CohesiveZone'] = False

#Setup Parameters (Default)

DataArray['StrongOrient'] = True

DataArray['BasePlate'] = True

def Define_ModelType_BasedData():

if DataArray['ModelType'] == 'Friction' or DataArray['ModelType'] == 'CohesiveZone':

DataArray['OnePartModel'] = False

elif DataArray['ModelType'] == 'RigidTie': #RigidTie, Tied, whatever I called it that day.

DataArray['OnePartModel'] = True

if DataArray['OnePartModel']:

DataArray['ColumnPart'], DataArray['FoundationPart'] = 'CombinedPart', 'CombinedPart'

else:

DataArray['ColumnPart'], DataArray['FoundationPart'] = 'Column', 'Foundation'
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if DataArray['ModelType'] == 'CohesiveZone':

DataArray['CohesiveZone'] = True

DataArray['ColumnPart'], DataArray['FoundationPart'] = 'CombinedPart-CZ',

'CombinedPart-CZ'

else:

DataArray['CohesiveZone'] = False

Define_ModelType_BasedData()

DataArray['BlockoutConcrete'] = False

#File paths

outputFileFolder = Heading + 'Research/1-ThesisResearch/'

if SuperComputing: outputFileFolder = Heading + 'RawOutputFiles/'

DataArray['outputFile'] = '%s%s%s.csv' %(outputFileFolder,PrimaryParameter,SecondaryParameter)

#Column properties

#Square/rectangular column properties

DataArray['cX'] = 6.855

DataArray['cY'] = 6.855

DataArray['StrongAxis'] = True

DataArray['ColumnName'] = 'W8X35'

def Define_ColumnName_BasedData():

global DataArray

DataArray['db'] = float(PropertiesDict[DataArray['ColumnName']][1])

DataArray['tw'] = float(PropertiesDict[DataArray['ColumnName']][3])

DataArray['bf'] = float(PropertiesDict[DataArray['ColumnName']][2])

DataArray['tf'] = float(PropertiesDict[DataArray['ColumnName']][4])

if DataArray['ColumnType'] == 'IBeam':

DataArray['Ix'] = float(PropertiesDict[DataArray['ColumnName']][6])

DataArray['Iy'] = float(PropertiesDict[DataArray['ColumnName']][7])

elif DataArray['ColumnType'] == 'Square' or DataArray['ColumnType'] == 'Rectangle':

DataArray['Ix'] = float(cX*cY**3/12)

DataArray['Iy'] = float(cY*cX**3/12)

k = float(PropertiesDict[DataArray['ColumnName']][5])

DataArray['fr'] = k - DataArray['tf']

db, tw, bf, tf = DataArray['db'], DataArray['tw'], DataArray['bf'], DataArray['tf']

DataArray['SA'] = db*tw+2*bf*tf-2*tf*tw #Surface Area / cross sectional area

Define_ColumnName_BasedData()

#Baseplate properties

baseWidth = 13.0

baseWidthX = baseWidth - 2.0

baseWidthY = baseWidth

baseDepth = 1.0

DataArray['BaseplateType'] = BaseplateType #BaseplateType Possibilities: 'Square', 'Rectangle', 

'Reduced', 'None'

def Define_BaseplateType_BasedData(): #Also includes changes to baseplate dimensions based on 

column size 

global baseWidth, baseWidthX, baseWidthY

if DataArray['ColumnName'] == 'W14X176': #Patches for individual test cases, not a 

universal solution here.
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baseWidth = 24.0

elif DataArray['ColumnName'] == 'W24X76':

assert BaseplateType == 'Rectangle'

# baseWidth = 39.0

baseWidthX = 20.0

baseWidthY = 34.0

else:

# DataArray['BaseplateType'] = BaseplateType

baseWidth = 13.0

baseWidthX = baseWidth - 2.0

baseWidthY = baseWidth

if DataArray['BaseplateType'] == 'Square':

DataArray['BasePlate'] = True

DataArray['baseWidthX'] = baseWidth

DataArray['baseWidthY'] = baseWidth

DataArray['baseDepth'] = baseDepth

elif DataArray['BaseplateType'] == 'Rectangle':

DataArray['BasePlate'] = True

DataArray['baseWidthX'] = baseWidthX

DataArray['baseWidthY'] = baseWidthY

DataArray['baseDepth'] = baseDepth

elif DataArray['BaseplateType'] == 'Reduced':

DataArray['BasePlate'] = True

DataArray['baseWidthX'] = DataArray['bf']

DataArray['baseWidthY'] = DataArray['db']

DataArray['baseDepth'] = baseDepth

elif DataArray['BaseplateType'] == 'None':

DataArray['BasePlate'] = False

# DataArray['baseWidthX'] = 0.0 #Should not be necessary

# DataArray['baseWidthY'] = 0.0 #Should not be necessary

DataArray['baseDepth'] = 0.0

if DataArray['BaseplateType'] <> 'None':

assert DataArray['baseWidthX'] >= DataArray['bf'] #Only valid in the case of 

strong-axis bending, FYI.

assert DataArray['baseWidthY'] >= DataArray['db']

Define_BaseplateType_BasedData()

#Foundation properties

DataArray['mwX'] = 42 #Medium (foundation) width in x-direction

DataArray['mwY'] = 42 #Medium (foundation) width in y-direction

DataArray['BCs'] = 'Bottom'

# DataArray['blockoutSize'] = 17.0

#Column lengths

DataArray['pL'] = 80.25 #Protruding

DataArray['eL'] = 5.5 #Embedded

def Define_eL_BasedData():

global DataArray

DataArray['cL'] = DataArray['eL'] + DataArray['pL'] #Column length: embedded + protruding

DataArray['cmd'] = 12.0 + DataArray['eL'] + DataArray['baseDepth'] + 1.5 #Default: 20.0

Define_eL_BasedData()
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#Moduli and PRs; concrete strength

DataArray['EmbeddedSteelMod'] = 29000000.0

DataArray['NormalConcreteMod'] = 3500000.0

DataArray['SteelPr'] = 0.27 #Poisson's ratio, for steel

DataArray['ConcretePr'] = 0.15 #pr for concrete

DataArray['CohesiveMod'] = 5E4 #The pseudomodulus that is used in the cohesive zone material.

DataArray['CohesiveDepth'] = 0.01

def Define_EmbeddedSteelMod_BasedData():

global DataArray

DataArray['ProtrudingSteelMod'] = DataArray['EmbeddedSteelMod']

Define_EmbeddedSteelMod_BasedData()

def Define_NormalConcreteMod_BasedData():

global DataArray

DataArray['BadConcreteMod'] = DataArray['NormalConcreteMod']

DataArray['GroutMod'] = DataArray['NormalConcreteMod']

strength = (float(DataArray['NormalConcreteMod'])/57000)**2 #For reference

Define_NormalConcreteMod_BasedData()

#Load and friction values

# DataArray['DistLoad'] = True #Is this functioning as a distributed load (as opposed to a 

point load)?

DataArray['DistLoad'] = not DataArray['StrongAxis'] #Is this functioning as a distributed load 

(as opposed to a point load)?

DataArray['load'] = 1000 #Pounds

DataArray['AxialLoad'] = 0 #Pounds

DataArray['NoFriction'] = False

DataArray['Friction'] = 0.50

DataArray['NoSeparation'] = False

#Mesh sizes

DataArray['MeshSize'] = 0.5

DataArray['UniformMesh'] = True

DataArray['SquareMesh'] = True

DataArray['QuadMesh'] = False

################################

#Run the bloody script already!#

################################

#Loops

#Note: All the assertion lines in here are to make sure you don't try to vary two parameters 

together that would result in bugs if you run them together.

#If you really want to run them together, code it yourself, and double (triple) check the code 

actually behaves like you are expecting.

for Param1 in PrimaryParameterList:

DataArray['Param1'] = Param1

DataArray[PrimaryParameter] = Param1

for Param2 in SecondaryParameterList:

DataArray['Param2'] = Param2

DataArray[SecondaryParameter] = Param2
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for eL in EmbedDepthsList:

DataArray['eL'] = eL

######Update properties that are based on variables that may have changed.#######

if 'ColumnName' in [PrimaryParameter, SecondaryParameter]:

assert DataArray['ColumnType'] == 'IBeam'

Define_ColumnName_BasedData()

if 'EmbeddedSteelMod' in [PrimaryParameter, SecondaryParameter]:

Define_EmbeddedSteelMod_BasedData()

if 'NormalConcreteMod' in [PrimaryParameter, SecondaryParameter]:

Define_NormalConcreteMod_BasedData()

if 'OnePartModel' in [PrimaryParameter, SecondaryParameter]:

Define_ModelType_BasedData()

if 'ModelType' in [PrimaryParameter, SecondaryParameter]: Define_ModelType_BasedData

()

if 'BaseplateType' in [PrimaryParameter, SecondaryParameter] or 'ColumnName' in [

PrimaryParameter, SecondaryParameter]:

# assert 'ColumnName' not in [PrimaryParameter, SecondaryParameter]

Define_BaseplateType_BasedData()

if 'baseDepth' in [PrimaryParameter, SecondaryParameter]: #Patch: baseDepth 

should be redefined to prevent it from being overwritten by the default baseDepth

if DataArray['BasePlate'] <> False:

if PrimaryParameter == 'baseDepth': DataArray['baseDepth'] = Param1

elif SecondaryParameter == 'baseDepth': DataArray['baseDepth'] = Param2

if DataArray['ColumnType'] == 'Square' or DataArray['ColumnType'] == 'Rectangle':

assert DataArray['StrongAxis'] == True

if 'StrongOrient' in [PrimaryParameter, SecondaryParameter]: DataArray['DistLoad'] =

not DataArray['StrongAxis'] #Is this functioning as a distributed load (as opposed 

to a point load)?

Define_eL_BasedData() #This goes after BaseplateType because BaseplateType affects 

baseDepth, which in turn affects cmd, which is in eL_BasedData

#Model Name - depends on Param1, Param2, and eL.

ModelName = '%s%s_%s%s_eL%s' %(PrimaryParameter, __removeDot(Param1),

SecondaryParameter, __removeDot(Param2), __removeDot(eL))

#Other metadata that depends on ModelName.

DataArray['ModelName'] = ModelName

DataArray['mdbFileName'] = WorkingDir + '/' + ModelName

DataArray['odbFileName'] = WorkingDir + '/' + ModelName + '.odb'

print(DataArray)

######Run the script, already!#########

if ScriptType == 'Preprocessing':

# from Scripts import Preprocessing

Preprocessing(DataArray)

elif ScriptType == 'Postprocessing':

# from Scripts import Postprocessing

Postprocessing(DataArray)

else:

raise TypeError('Unexpected Script Type.')
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##############################################

#Import lines and other initialization tasks.#

##############################################

from abaqus import *

from abaqusConstants import *

import __main__

import section

import regionToolset

import displayGroupMdbToolset as dgm

import part

import material

import assembly

import step

import interaction

import load

import mesh

import job

import sketch

import visualization

import xyPlot

import displayGroupOdbToolset as dgo

import connectorBehavior

import os

from linecache import getline

from math import sqrt

# from datetime import datetime

session.journalOptions.setValues(replayGeometry=COORDINATE, recoverGeometry=COORDINATE)

###########################################################################################

#After this point is the subroutines that feed into the pre- and post-processing routines.#

###########################################################################################

def __TimeStamp():

global TimeStamp

from datetime import datetime

month = str(datetime.now().month)

day = str(datetime.now().day)

year = str(datetime.now().year)

hour = str(datetime.now().hour)

minute = str(datetime.now().minute)

second = str(datetime.now().second)

return '{0}-{1}-{2}_{3}-{4}-{5}'.format(month, day, year, hour, minute, second)

def __openwrite(outputFile):

with open(outputFile, 'a') as f:

f.write('%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,\n' %('Model Name', 'Primary Parameter',

'Primary Value', \

'Secondary Parameter', 'Secondary Value', 'Embedment Length', 'Column Shape',

'Total Displacement', 'Connection Stiffness', \
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'Connection Rotational Stiffness', 'Timestamp'))

def __filter(largeGroup, filteredGroup):

return filter(lambda x: x not in filteredGroup, largeGroup)

def CreateModel():

#Model creation

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

print(ModelName)

mdb.Model(name=ModelName, modelType=STANDARD_EXPLICIT)

def CreateAndCheckOutputFile():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

if os.path.exists(outputFile) == False:

__openwrite(outputFile)

else:

try:

with open(outputFile, 'a') as f:

f.write('')

except IOError:

outputFile = outputFile[0:-4] + '(2).csv'

if os.path.exists(outputFile) == False:

__openwrite(outputFile)

else:

try:

with open(outputFile, 'a') as f:

f.write('')

except IOError:

raise IOError

def ColumnCreation():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

s = mdb.models[ModelName].ConstrainedSketch(name='__profile__',

sheetSize=200.0)

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints

s.setPrimaryObject(option=STANDALONE)

if ColumnType == 'IBeam' and StrongAxis == True:

s.rectangle(point1=(0, (-db / 2) + tf), point2=((tw / 2),(db / 2) - tf))

s.rectangle(point1=(0, -db/2), point2=(bf/2, -db/2 + tf))

s.rectangle(point1=(0, db/2 - tf), point2=(bf/2, db/2))

s.autoTrimCurve(curve1=g.findAt((bf / 2 - 0.001, -db/2 + tf)), point1=(0.001, -db/2 + tf

))

s.autoTrimCurve(curve1=g.findAt((0.001, -db/2 + tf)), point1=(0.001, -db/2 + tf))

s.autoTrimCurve(curve1=g.findAt((bf / 2 - 0.001, db/2 - tf)), point1=(0.001, db/2 - tf))

s.autoTrimCurve(curve1=g.findAt((0.001, db/2 - tf)), point1=(0.001, db/2 - tf))

elif ColumnType == 'IBeam' and StrongAxis == False:

s.rectangle(point1=(0, tw/2), point2=(db/2 - tf, -tw/2))

s.rectangle(point1=(db/2-tf, bf/2), point2=(db/2, -bf/2))

s.autoTrimCurve(curve1=g.findAt((db/2 - tf, 0.0)), point1=((db/2 - tf, 0.0)))

s.autoTrimCurve(curve1=g.findAt((db/2 - tf, 0.0)), point1=((db/2 - tf, 0.0)))
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p = mdb.models[ModelName].Part(name='Column', dimensionality=THREE_D,

type=DEFORMABLE_BODY)

p = mdb.models[ModelName].parts['Column']

p.BaseSolidExtrude(sketch=s, depth=cL)

mdb.models[ModelName].sketches.changeKey(fromName='__profile__',

toName='ColumnSketch')

s.unsetPrimaryObject()

#Column Part Division

p = mdb.models[ModelName].parts['Column']

DatumPointID=p.DatumPointByCoordinate(coords=(0.0, 0.0, eL)).id

p = mdb.models[ModelName].parts['Column']

c = p.cells

pickedCells = c.findAt(((0.0, 0.0, 0.0), ))

e1, v2, d2 = p.edges, p.vertices, p.datums

if ColumnType == 'IBeam':

if StrongAxis == True:

coord = (0.0, db / 2, eL)

elif StrongAxis == False:

coord = (0.0, tw/2, eL)

p.PartitionCellByPlanePointNormal(point=d2[DatumPointID], normal=e1.findAt(coordinates=coord

), cells=pickedCells)

#Add baseplate

if DataArray['BasePlate']== True:

p = mdb.models[ModelName].parts['Column']

f, e = p.faces, p.edges

if ColumnType == 'IBeam':

if StrongAxis:

coord1 = (tw/4, -db/4, 0.0)

coord2 = (tw/2, 0.0, 0.0)

else:

coord1 = (db/2-tf/2, -bf/2, 0.0)

coord2 = (db/2, 0.0, 0.0)

t = p.MakeSketchTransform(sketchPlane=f.findAt(coordinates=coord1), sketchUpEdge=e.

findAt(coordinates=coord2),

sketchPlaneSide=SIDE1, sketchOrientation=RIGHT, origin=(0.0, 0.0, 0.0))

s = mdb.models[ModelName].ConstrainedSketch(name='__profile__',

sheetSize=22.62, gridSpacing=0.56, transform=t)

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints

s.setPrimaryObject(option=SUPERIMPOSE)

p = mdb.models[ModelName].parts['Column']

p.projectReferencesOntoSketch(sketch=s, filter=COPLANAR_EDGES)

s.rectangle(point1=(0, -baseWidthY / 2), point2=(baseWidthX / 2, baseWidthY / 2))

p = mdb.models[ModelName].parts['Column']

f1, e1 = p.faces, p.edges

p.SolidExtrude(sketchPlane=f1.findAt(coordinates=coord1),

sketchUpEdge=e1.findAt(coordinates=coord2),

sketchPlaneSide=SIDE1, sketchOrientation=RIGHT, sketch=s, depth=baseDepth,
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flipExtrudeDirection=OFF)

mdb.models[ModelName].sketches.changeKey(fromName='__profile__',

toName='BaseplateSketch')

s.unsetPrimaryObject()

def DivideColumn():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

p = mdb.models[ModelName].parts['Column']

c = p.cells

f = p.faces

if StrongAxis:

#Dividing the top-down face into rectangular cells

pickedCells = c[:]#Select all cells

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(bf/2 - (bf/2-tw/2)/2, db/2

- tf, pL/2)), cells=pickedCells) #pL/2 will have to be reduced when converting to a 

beam with shell elements

pickedCells = c[:]#Reselect all cells

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(bf/2 - (bf/2-tw/2)/2, -db/2

+ tf, pL/2)), cells=pickedCells)

else:

pickedCells = c[:]#Select all cells

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(db/2-tf, tw/2 +(bf/2-tw/2)/

2, pL/2)), cells=pickedCells)

#Divisions with baseplate involved

if BasePlate == True:

if StrongAxis:

if baseWidthX > bf:

pickedCells = c[:]

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(bf/2, db/2 - tf/2,

cmd-eL/2)), cells=pickedCells)

elif not StrongAxis:

if baseWidthX > db:

pickedCells = c[:]

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(db/2-tf/2, bf/2,

cmd-eL/2)), cells=pickedCells)

pickedCells = c[:]

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(db/2-tf/2, -bf/2,

cmd-eL/2)), cells=pickedCells)

pickedCells = c[:]

if StrongAxis:

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(baseWidthX/4, 0,0)),

cells=pickedCells)

elif not StrongAxis:

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(0.001, baseWidthY/4,0

)), cells=pickedCells)

def CreateSet():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

#Partition the top edge of the middle of the column

p = mdb.models[ModelName].parts['Column']
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e = p.edges

pickedEdges = e.findAt(((0.0, 0.0, cL), ))

p.PartitionEdgeByParam(edges=pickedEdges, parameter=0.5)

#Create set for strong applied load

p = mdb.models[ModelName].parts['Column']

v = p.vertices

verts = v.findAt(((0.0, 0.0, cL), ))

p.Set(vertices=verts, name='Set-1')

def SketchFoundation():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

#Continuum Part Creation

s = mdb.models[ModelName].ConstrainedSketch(name='__profile__',

sheetSize=200.0)

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints

s.setPrimaryObject(option=STANDALONE)

s.rectangle(point1=(0, - mwY / 2), point2=(mwX / 2, mwY / 2))

p = mdb.models[ModelName].Part(name='Foundation', dimensionality=THREE_D,

type=DEFORMABLE_BODY)

p = mdb.models[ModelName].parts['Foundation']

p.BaseSolidExtrude(sketch=s, depth=cmd)

s.unsetPrimaryObject()

del mdb.models[ModelName].sketches['__profile__']

#Cut hole for column.

f, e = p.faces, p.edges

t = p.MakeSketchTransform(sketchPlane=f.findAt(coordinates=(0.0, 0.0,

cmd)), sketchUpEdge=e.findAt(coordinates=(mwX/2, 0.0, cmd)),

sketchPlaneSide=SIDE1, sketchOrientation=RIGHT, origin=(0.0, 0.0,

cmd))

s1 = mdb.models[ModelName].ConstrainedSketch(name='__profile__',

sheetSize=27.71, gridSpacing=0.69, transform=t)

g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints

s1.setPrimaryObject(option=SUPERIMPOSE)

p.projectReferencesOntoSketch(sketch=s1, filter=COPLANAR_EDGES)

s1.retrieveSketch(sketch=mdb.models[ModelName].sketches['ColumnSketch'])

f1, e1 = p.faces, p.edges

p.CutExtrude(sketchPlane=f1.findAt(coordinates=(0.0, 0.0, cmd)),

sketchUpEdge=e1.findAt(coordinates=(mwX/2, 0.0, cmd)),

sketchPlaneSide=SIDE1, sketchOrientation=RIGHT, sketch=s1, depth=eL,

flipExtrudeDirection=OFF)

s1.unsetPrimaryObject()

del mdb.models[ModelName].sketches['__profile__']

#Cut hole for baseplate.

if BasePlate == True:

f, e = p.faces, p.edges

if ColumnType == 'IBeam':

if StrongAxis:

coord = (tw / 10, -db / 10, cmd- eL)

elif not StrongAxis:

coord = (db / 10, 0.0, cmd- eL)
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t = p.MakeSketchTransform(sketchPlane=f.findAt(coordinates=coord),

sketchUpEdge=e.findAt(coordinates=(0.0, 0.0, cmd - eL)),

sketchPlaneSide=SIDE1, sketchOrientation=RIGHT, origin=(0.0, 0.0,

cmd - eL))

s1 = mdb.models[ModelName].ConstrainedSketch(name='__profile__',

sheetSize=27.71, gridSpacing=0.69, transform=t)

g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, s1.constraints

s1.setPrimaryObject(option=SUPERIMPOSE)

p.projectReferencesOntoSketch(sketch=s1, filter=COPLANAR_EDGES)

s1.rectangle(point1=(0, -baseWidthY / 2), point2=(baseWidthX / 2, baseWidthY / 2))

f1, e1 = p.faces, p.edges

p.CutExtrude(sketchPlane=f1.findAt(coordinates=coord),

sketchUpEdge=e1.findAt(coordinates=(0.0, 0.0, cmd - eL)),

sketchPlaneSide=SIDE1, sketchOrientation=RIGHT, sketch=s1, depth=baseDepth,

flipExtrudeDirection=OFF)

s1.unsetPrimaryObject()

del mdb.models[ModelName].sketches['__profile__']

def DivideFoundation():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

p = mdb.models[ModelName].parts['Foundation']

c = p.cells

f = p.faces

coh = offsetVal

#Dividing the top-down face into rectangular cells

if StrongAxis:

pickedCells = c[:]#Select all cells

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(bf/2, db/2 - tf/2, cmd-eL/2

)), cells=pickedCells)

pickedCells = c[:]#Reselect all cells

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(bf/2 - (bf/2-tw/2)/2, db/2

- tf, cmd - eL/2)), cells=pickedCells)

pickedCells = c[:]

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(bf/2 - (bf/2-tw/2)/2, -db/2

+ tf, cmd - eL/2)), cells=pickedCells)

elif not StrongAxis:

pickedCells = c[:]

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(db/2 - tf, tw/2 + 0.001,

cmd - eL/2)), cells=pickedCells)

pickedCells = c[:]

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(db/2-tf/2, bf/2 , cmd-eL/2

)), cells=pickedCells)

pickedCells = c[:]

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(db/2-tf/2,-bf/2, cmd - eL/2

)), cells=pickedCells)

#Nothing below here needs to change for strong/weak axis bending

#Dividing the side-view face into rectangular cells

if BaseplateType == 'Square' or BaseplateType == 'Rectangle':

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(baseWidthX / 2 - 0.001, -
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baseWidthY / 2 + 0.001, cmd-eL)), cells=c[:])

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(baseWidthX/4, -baseWidthY/2

, cmd-eL-baseDepth/2)), cells=c[:])

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(baseWidthX/4, baseWidthY/2,

cmd-eL-baseDepth/2)), cells=c[:])

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates=(baseWidthX/4, 0, cmd-eL-

baseDepth)), cells=c[:])

else: #This will work for either a reduced bp or none at all.

p.PartitionCellByExtendFace(extendFace=f.findAt(coordinates = (bf/4, db/2 - tf/4, cmd-eL

-baseDepth)), cells=c[:])

if CohesiveZone:

p = mdb.models[ModelName].parts['Foundation']

d = p.datums

f = p.faces

c = p.cells

#Create datum planes to partition cohesive zones

if StrongAxis:

topFlangeTopID = p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset=db/2 +

offsetVal).id

topFlangeBotID = p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset=db/2 -

tf - offsetVal).id

botFlangeTopID = p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset=-db/2 +

tf + offsetVal).id

botFlangeBotID = p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset=-db/2 -

offsetVal).id

webID = p.DatumPlaneByPrincipalPlane(principalPlane=YZPLANE, offset=tw/2 + offsetVal

).id

flangeEdgeID = p.DatumPlaneByPrincipalPlane(principalPlane=YZPLANE, offset=bf/2 +

offsetVal).id

#Create partitions

p.PartitionCellByExtendFace(extendFace=f.findAt((bf/4, db/2, cmd-eL/2),), cells=c[:])

p.PartitionCellByExtendFace(extendFace=f.findAt((bf/4, -db/2, cmd-eL/2),), cells=c

[:])

#Top flange top

pickedCells = c.findAt((bf/4, db/2 + offsetVal/2, cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[topFlangeTopID], cells=pickedCells)

#Top flange bottom

c = p.cells

pickedCells = c.findAt((bf/4, db/2 - tf - offsetVal/2, cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[topFlangeBotID], cells=pickedCells)

#Bottom flange top

c = p.cells

pickedCells = c.findAt((bf/4, -db/2 + tf + offsetVal/2, cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[botFlangeTopID], cells=pickedCells)

#Bottom flange bottom

c = p.cells

pickedCells = c.findAt((bf/4, -db/2 - offsetVal/2, cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[botFlangeBotID], cells=pickedCells)

#Web

c = p.cells

pickedCells = c.findAt((tw/2 + offsetVal/2,0.0, cmd-eL/2),)
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p.PartitionCellByDatumPlane(datumPlane=d[webID], cells=pickedCells)

#Top flange edge

c = p.cells

pickedCells = c.findAt((bf/2 + offsetVal/2, db/2 - tf/2, cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[flangeEdgeID], cells=pickedCells)

#Bottom flange edge

c = p.cells

pickedCells = c.findAt((bf/2 + offsetVal/2, -db/2 + tf/2, cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[flangeEdgeID], cells=pickedCells)

#Corners

if BaseplateType <> 'Reduced' and BaseplateType <> 'None': #As it is, the corner 

divisions are only cosmetic (until I can actually assign them cohesive elements and 

properties). So, since the corners are giving me mesh problems for reduced 

baseplate models, I'll take them out.

#Corners - sketch

p = mdb.models[ModelName].parts['Foundation']

f, e, d = p.faces, p.edges, p.datums

t = p.MakeSketchTransform(sketchPlane=f.findAt((tw/2 + coh + 0.001, 0.0, cmd),),

sketchUpEdge=e.findAt((bf/2, 0.0, cmd),),

sketchPlaneSide=SIDE1, origin=(0.0, 0.0, cmd))

s = mdb.models[ModelName].ConstrainedSketch(

name='__profile__', sheetSize=23.96, gridSpacing=0.59, transform=t)

g, v, d1, c = s.geometry, s.vertices, s.dimensions, s.constraints

s.setPrimaryObject(option=SUPERIMPOSE)

p = mdb.models[ModelName].parts['Foundation']

p.projectReferencesOntoSketch(sketch=s, filter=COPLANAR_EDGES)

s.rectangle(point1=(bf/2, db/2), point2=(bf/2 + coh, db/2+coh))#Top flange, top 

corner

s.rectangle(point1=(bf/2, db/2 - tf), point2=(bf/2 + coh, db/2 - tf - coh))#Top 

flange, bot corner

s.rectangle(point1=(bf/2, -db/2 + tf), point2=(bf/2 + coh, -db/2 + tf + coh))

#Bot flange, top corner

s.rectangle(point1=(bf/2, -db/2), point2=(bf/2 + coh, -db/2 - coh))#Bot flange, 

bot corner

p = mdb.models[ModelName].parts['Foundation']

f = p.faces

pickedFaces = (f.findAt((bf/2 + coh, db/2 + coh, cmd),), f.findAt((bf/2 + coh,

0.0, cmd),), f.findAt((bf/2 + coh, -db/2 - coh, cmd),))

e1, d2 = p.edges, p.datums

p.PartitionFaceBySketch(sketchUpEdge=e1.findAt((bf/2, 0.0, cmd),), faces=

pickedFaces, sketch=s)

s.unsetPrimaryObject()

del mdb.models[ModelName].sketches['__profile__']

#Corners - division

p = mdb.models[ModelName].parts['Foundation']

c = p.cells

e, d = p.edges, p.datums
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pickedCells1 = c.findAt((bf/2 + coh, db/2 + coh, cmd-eL/2),)

pickedEdges1 =(e.findAt((bf/2+coh, db/2+coh/2, cmd),), e.findAt((bf/2 + coh/2,

db/2+coh, cmd),)) #top flange top corner

p.PartitionCellByExtrudeEdge(line=e.findAt((bf/2, db/2, cmd-0.001),), cells=

pickedCells1, edges=pickedEdges1,

sense=FORWARD)

pickedCells2 = c.findAt((bf/2 + coh + 0.001, 0.0, cmd-eL/2),)

pickedEdges2 =(e.findAt((bf/2+coh, db/2-tf-coh/2, cmd),), e.findAt((bf/2+coh/2,

db/2-tf-coh, cmd),)) #top flange bot corner

p.PartitionCellByExtrudeEdge(line=e.findAt((bf/2, db/2-tf, cmd-0.001),), cells=

pickedCells2, edges=pickedEdges2,

sense=FORWARD)

pickedCells2 = c.findAt((bf/2 + coh + 0.001, 0.0, cmd-eL/2),)

pickedEdges3 = (e.findAt((bf/2+coh, -db/2+tf+coh/2, cmd),), e.findAt((bf/2+coh/2

, -db/2+tf+coh, cmd),)) #bot flange top

p.PartitionCellByExtrudeEdge(line=e.findAt((bf/2, -db/2+tf, cmd-0.001),), cells=

pickedCells2, edges=pickedEdges3,

sense=FORWARD)

c = p.cells

e, d = p.edges, p.datums

pickedCells3 = c.findAt((bf/2 + coh, -db/2 - coh, cmd-eL/2),)

pickedEdges4 = (e.findAt((bf/2+coh, -db/2-coh/2, cmd),), e.findAt((bf/2+coh/2, -

db/2-coh, cmd),)) #bot flange bot

p.PartitionCellByExtrudeEdge(line=e.findAt((bf/2, db/2, cmd-0.001),), cells=

pickedCells3, edges=pickedEdges4,

sense=FORWARD)

elif not StrongAxis:

webTopID = p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset=tw/2 +

offsetVal).id

webBotID = p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset=-tw/2 -

offsetVal).id

flangeLeftID = p.DatumPlaneByPrincipalPlane(principalPlane=YZPLANE, offset=db/2 - tf

- offsetVal).id

flangeRightID = p.DatumPlaneByPrincipalPlane(principalPlane=YZPLANE, offset=db/2 +

offsetVal).id

flangeTopID = p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset=bf/2 +

offsetVal).id

flangeBotID = p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset=-bf/2 -

offsetVal).id

#Create partitions

p.PartitionCellByExtendFace(extendFace=f.findAt((db/2, 0.0, cmd-eL/2),), cells=c[:])

#Web top

c = p.cells

pickedCells = c.findAt((db/4, tw/2 + coh, cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[webTopID], cells=pickedCells)

#Web bot

c = p.cells

-9-



www.manaraa.com

J:\Scripts\Scripts.py Monday, February 29, 2016 1:46 PM

pickedCells = c.findAt((db/4, -tw/2 - coh, cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[webBotID], cells=pickedCells)

#Flange Left

c = p.cells

pickedCells = c.findAt((db/2 - tf - coh, tw/2 + coh + 0.001, cmd-eL/2), )

p.PartitionCellByDatumPlane(datumPlane=d[flangeLeftID], cells=pickedCells)

c = p.cells

pickedCells = c.findAt((db/2 - tf - coh, -tw/2 - coh - 0.001, cmd-eL/2), )

p.PartitionCellByDatumPlane(datumPlane=d[flangeLeftID], cells=pickedCells)

#Flange Right

c = p.cells

pickedCells = c.findAt((db/2 + coh, 0.0 , cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[flangeRightID], cells=pickedCells)

#Flange Top

c = p.cells

pickedCells = c.findAt((db/2 - tf/2, bf/2 + coh , cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[flangeTopID], cells=pickedCells)

#Flange Bot

c = p.cells

pickedCells = c.findAt((db/2 - tf/2, -bf/2 - coh , cmd-eL/2),)

p.PartitionCellByDatumPlane(datumPlane=d[flangeBotID], cells=pickedCells)

if BasePlate: #Create divisions for the cohesive zone around the baseplate.

baseplateBotID = p.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset = cmd -

eL - baseDepth - offsetVal).id

baseplateTopID = p.DatumPlaneByPrincipalPlane(principalPlane=XYPLANE, offset = cmd -

eL + offsetVal).id

baseplateUpID = p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset =

baseWidthY / 2 + offsetVal).id

baseplateDownID = p.DatumPlaneByPrincipalPlane(principalPlane=XZPLANE, offset = -

baseWidthY / 2 - offsetVal).id

baseplateSideID = p.DatumPlaneByPrincipalPlane(principalPlane=YZPLANE, offset =

baseWidthX / 2 + offsetVal).id

d = p.datums

f = p.faces

c = p.cells

if BaseplateType == 'Square' or BaseplateType == 'Rectangle':

p.PartitionCellByExtendFace(extendFace=f.findAt((baseWidthX/2, 0.0, cmd-eL -

baseDepth/2),), cells=c[:])

c = p.cells

pickedCells = c.getByBoundingBox(zMax = cmd - eL - baseDepth, xMax = baseWidthX / 2,

yMin = -baseWidthY / 2, yMax = baseWidthY / 2)

p.PartitionCellByDatumPlane(datumPlane=d[baseplateBotID], cells=pickedCells)

c = p.cells

pickedCells = c.getByBoundingBox(zMin = cmd - eL, xMax = baseWidthX / 2, yMin = -

baseWidthY / 2, yMax = baseWidthY / 2)

p.PartitionCellByDatumPlane(datumPlane=d[baseplateTopID], cells=pickedCells)

if BaseplateType == 'Square' or BaseplateType == 'Rectangle':

c = p.cells

pickedCells = c.getByBoundingBox(xMax = baseWidthX / 2, yMin = baseWidthY / 2,

zMin = cmd - eL - baseDepth, zMax = cmd - eL)

p.PartitionCellByDatumPlane(datumPlane=d[baseplateUpID], cells=pickedCells)
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c = p.cells

pickedCells = c.getByBoundingBox(xMax = baseWidthX / 2, yMax = -baseWidthY / 2,

zMin = cmd - eL - baseDepth, zMax = cmd - eL)

p.PartitionCellByDatumPlane(datumPlane=d[baseplateDownID], cells=pickedCells)

c = p.cells

pickedCells = c.getByBoundingBox(xMin = baseWidthX / 2, yMin = -baseWidthY / 2,

yMax = baseWidthY / 2, zMin = cmd - eL - baseDepth, zMax = cmd - eL)

p.PartitionCellByDatumPlane(datumPlane=d[baseplateSideID], cells=pickedCells)

else:

pass #Create divisions for the cohesive zone around the bottom of the column

def CreateMaterials_DefineSections():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

m = mdb.models[ModelName]

m.Material(name='EmbeddedSteel')

m.materials['EmbeddedSteel'].Elastic(table=((

EmbeddedSteelMod, SteelPr), ))

m.Material(name='Foundation')

m.materials['Foundation'].Elastic(table=((

NormalConcreteMod, ConcretePr), ))

m.Material(name='ProtrudingSteel')

m.materials['ProtrudingSteel'].Elastic(table=((

ProtrudingSteelMod, SteelPr), ))

if CohesiveZone:

m.Material(name='Cohesive')

m.materials['Cohesive'].Elastic(type=TRACTION, table=((CohesiveMod, CohesiveMod/2,

CohesiveMod/2), ))

# Create material section definitions.

m.HomogeneousSolidSection(name='EmbeddedSteel',

material='EmbeddedSteel', thickness=None)

m.HomogeneousSolidSection(name='Foundation',

material='Foundation', thickness=None)

m.HomogeneousSolidSection(name='ProtrudingSteel',

material='ProtrudingSteel', thickness=None)

if CohesiveZone:

m.CohesiveSection(name='Cohesive', material='Cohesive', response=TRACTION_SEPARATION,

outOfPlaneThickness=None)

def SectionAssign_OneMaterial():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

#All concrete is one modulus; all steel is another.

coh = offsetVal

#Protruding Column

p = mdb.models[ModelName].parts['Column']

c = p.cells

cells = c[:]

region = regionToolset.Region(cells=cells)

p.SectionAssignment(region=region, sectionName='ProtrudingSteel', offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField='',

-11-



www.manaraa.com

J:\Scripts\Scripts.py Monday, February 29, 2016 1:46 PM

thicknessAssignment=FROM_SECTION)

#Foundation

#Cohesive zone cells, if needed

p = mdb.models[ModelName].parts['Foundation']

c = p.cells

if CohesiveZone == True:#Assign the cohesive zone section to those areas that are in the 

cohesive zone.

if StrongAxis:

cells1 = c.findAt(((bf/4, db/2 + offsetVal/2, cmd-eL/2),))

cells2 = c.findAt(((bf/4, db/2 - tf - offsetVal/2, cmd-eL/2),))

cells3 = c.findAt(((bf/4, -db/2 + tf + offsetVal/2, cmd-eL/2),))

cells4 = c.findAt(((bf/4, -db/2 - offsetVal/2, cmd-eL/2),))

cells5 = c.findAt(((tw/2 + offsetVal/2,0.0, cmd-eL/2),))

cells6 = c.findAt(((bf/2 + offsetVal/2, db/2 - tf/2, cmd-eL/2),))

cells7 = c.findAt(((bf/2 + offsetVal/2, -db/2 + tf/2, cmd-eL/2),))

pass #corners

cohesiveCells = cells1 + cells2 + cells3 + cells4 + cells5 + cells6 + cells7

elif not StrongAxis:

cells1 = c.findAt(((db/4, tw/2 + coh/2, cmd-eL/2),))

cells2 = c.findAt(((db/4, -tw/2 - coh/2, cmd-eL/2),))

cells3 = c.findAt(((db/2 - tf - coh/2, db/4, cmd-eL/2),))

cells4 = c.findAt(((db/2 - tf - coh/2, -db/4, cmd-eL/2),))

cells5 = c.findAt(((db/2 + coh/2, 0.0, cmd-eL/2),))

cells6 = c.findAt(((db/2 - tf/2, bf/2 + coh/2, cmd-eL/2),))

cells7 = c.findAt(((db/2 - tf/2, -bf/2 - coh/2, cmd-eL/2),))

pass #corners

cohesiveCells = cells1 + cells2 + cells3 + cells4 + cells5 + cells6 + cells7

if BasePlate:

cells8 = c.getByBoundingBox(xMin=0.0, xMax=baseWidthX/2, yMin = -baseWidthY/2, yMax

= baseWidthY/2, zMin=cmd-eL, zMax=cmd-eL+offsetVal)#Beneath baseplate

cells9 = c.getByBoundingBox(xMin=0.0, xMax=baseWidthX/2, yMin = -baseWidthY/2, yMax

= baseWidthY/2, zMax=cmd-eL-baseDepth, zMin=cmd-eL-baseDepth-offsetVal) #Below 

baseplate

cells10 = c.getByBoundingBox(xMin=0.0, xMax=baseWidthX/2, yMin = baseWidthY/2, yMax

= baseWidthY/2+offsetVal, zMin=cmd-eL-baseDepth, zMax=cmd-eL) #Up-baseplate side

cells11 = c.getByBoundingBox(xMin=0.0, xMax=baseWidthX/2, yMin = -baseWidthY/2-

offsetVal, yMax = -baseWidthY/2, zMin=cmd-eL-baseDepth, zMax=cmd-eL)

#Down-baseplate side

cells12 = c.getByBoundingBox(xMin=baseWidthX/2, xMax=baseWidthX/2+offsetVal, yMin =

-baseWidthY/2, yMax = baseWidthY/2, zMin=cmd-eL-baseDepth, zMax=cmd-eL)

#Right-baseplate side

cohesiveCells =cohesiveCells + cells8 + cells9 + cells10 + cells11 + cells12

region = regionToolset.Region(cells=cohesiveCells)

p.SectionAssignment(region=region, sectionName='Cohesive', offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField='', thicknessAssignment=FROM_SECTION)

#Concrete cells

p = mdb.models[ModelName].parts['Foundation']

c = p.cells

if CohesiveZone == False:

cells = c[:]

region = regionToolset.Region(cells=cells)
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p.SectionAssignment(region=region, sectionName='Foundation', offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField='',

thicknessAssignment=FROM_SECTION)

else: #I'm really proud of this part of code. Took me forever to come up with it right. -TAJ

#Get a list of all the indices of the cells

bigList = []

for cell in c:

bigList += [cell.index]

#List of indices to be filtered

smallList = []

for cell in cohesiveCells:

smallList += [cell.index]

#Filter - now we have a list of all indices we want

cellsList = __filter(bigList, smallList)

#Loop through each index; grab that cell, give it a section assignment.

for index in cellsList:

i = int(index) #Not needed?

region = regionToolset.Region(cells=c[index:(index+1)])

p.SectionAssignment(region=region, sectionName='Foundation', offset=0.0,

offsetType=MIDDLE_SURFACE, offsetField='',

thicknessAssignment=FROM_SECTION)

def CreateLoadStep():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

#Create load step

mdb.models[ModelName].StaticStep(name='Load', previous='Initial', maxNumInc=500)

def AssemblyInstance():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

#Create assembly

a = mdb.models[ModelName].rootAssembly

a.DatumCsysByDefault(CARTESIAN)

p = mdb.models[ModelName].parts['Column']

a.Instance(name='Column-1', part=p, dependent=ON)

a = mdb.models[ModelName].rootAssembly

p = mdb.models[ModelName].parts['Foundation']

a.Instance(name='Foundation-1', part=p, dependent=ON)

#Align assembly

a = mdb.models[ModelName].rootAssembly

a.translate(instanceList=('Column-1', ), vector=(0.0, 0.0, cmd - eL))

def MergeInstances():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

a1 = mdb.models[ModelName].rootAssembly

a1.InstanceFromBooleanMerge(name='CombinedPart', instances=(

a1.instances['Column-1'], a1.instances['Foundation-1'], ),

keepIntersections=ON, originalInstances=SUPPRESS, domain=GEOMETRY)

def Contact():

for key in DataArray.keys():
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exec('%s = DataArray["%s"]' %(key, key))

#Create face group

a = mdb.models[ModelName].rootAssembly

s1 = a.instances['Column-1'].faces

if ColumnType == 'IBeam':

if StrongAxis:

#1-Column flange, exterior faces; 2-Top column flange, top face; 3- Top column 

flange, bottom face; 4-Web exterior face; 5-Bottom column flange, top face

#6- Bottom column flange, bottom face; 7-Baseplate, upper face; 8-Baseplate, lower 

face; 9-Baseplate, top face; 10-Baseplate, exterior face; 11-Baseplate, bottom face

side1Faces1 = s1.getByBoundingBox(xMin = bf/2, xMax = bf/2, zMax=cmd) + \

s1.getByBoundingBox(yMin = db/2, yMax = db/2, zMax=cmd) + \

s1.getByBoundingBox(yMin = db/2 - tf, yMax = db/2 - tf, zMax=cmd) + \

s1.getByBoundingBox(xMin = tw/2, xMax = tw/2, zMax=cmd) + \

s1.getByBoundingBox(yMin = - db/2 + tf, yMax = -db/2 + tf, zMax=cmd) + \

s1.getByBoundingBox(yMin = -db/2, yMax = -db/2, zMax=cmd) + \

s1.getByBoundingBox(zMin = cmd - eL, zMax = cmd - eL) + \

s1.getByBoundingBox(zMin = cmd - eL - baseDepth, zMax = cmd - eL - baseDepth) + \

s1.getByBoundingBox(yMin = baseWidthY/2, yMax = baseWidthY/2, zMax=cmd) + \

s1.getByBoundingBox(xMin = baseWidthX/2, xMax = baseWidthX/2, zMax=cmd) + \

s1.getByBoundingBox(yMin = -baseWidthY/2, yMax = -baseWidthY/2, zMax=cmd)

#Warning: if other faces later starts becoming colinear with these faces, some of 

these methods will accidentally grab those planes as well. Be careful!

region1=regionToolset.Region(side1Faces=side1Faces1)

elif not StrongAxis:

#1-Top column faces (web top, flange top-left, flange top) 2-Side column face 

(flange right) 3-Bottom column faces (web bottom, flange bottom-left, flange bottom)

#4-Baseplate, upper face; 5-Baseplate, lower face; 6-Baseplate, top face; 

7-Baseplate, exterior face; 8-Baseplate, bottom face

side1Faces1 = s1.getByBoundingBox(xMin = 0, xMax = db/2, yMin=tw/2, yMax=bf/2, zMin=

cmd-eL, zMax=cmd) + \

s1.getByBoundingBox(xMin = db/2, xMax = db/2, zMax=cmd) + \

s1.getByBoundingBox(xMin = 0, xMax = db/2, yMin=-bf/2, yMax=-tw/2, zMin=cmd-eL,

zMax=cmd) + \

s1.getByBoundingBox(zMin = cmd - eL, zMax = cmd - eL) + \

s1.getByBoundingBox(zMin = cmd - eL - baseDepth, zMax = cmd - eL - baseDepth) + \

s1.getByBoundingBox(yMin = baseWidthY/2, yMax = baseWidthY/2) + \

s1.getByBoundingBox(xMin = baseWidthX/2, xMax = baseWidthX/2) + \

s1.getByBoundingBox(yMin = -baseWidthY/2, yMax = -baseWidthY/2)

#Warning: if other faces later starts becoming colinear with these faces, some of 

these methods will accidentally grab those planes as well. Be careful!

region1=regionToolset.Region(side1Faces=side1Faces1)

s1 = a.instances['Foundation-1'].faces

if ColumnType == 'IBeam':

if StrongAxis:

#Faces touching the web, then top flange, then bottom flange

side1Faces1 = s1.getByBoundingBox(0, -db/2, cmd-eL, tw/2, db/2, cmd) + \

s1.getByBoundingBox(0,db/2-tf,cmd-eL,bf/2,db/2, cmd ) + \

s1.getByBoundingBox(0,-db/2,cmd-eL,bf/2,-(db/2 -tf), cmd)

elif not StrongAxis:

#Faces touching the web, then flange
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side1Faces1 = s1.getByBoundingBox(0, -tw/2, cmd-eL, db/2-tf, tw/2, cmd) + \

s1.getByBoundingBox(db/2-tf,-bf/2,cmd-eL,db/2,bf/2,cmd )

if BasePlate:

side1Faces1 += s1.getByBoundingBox(0,-baseWidthY/2,cmd-eL-baseDepth,baseWidthX/2,

baseWidthY/2,cmd-eL) #Faces touching the baseplate

region2=regionToolset.Region(side1Faces=side1Faces1)

if ModelType == 'Contact' or ModelType == 'Friction':

#Create interaction properties

mdb.models[ModelName].ContactProperty('IntProp-1')

if not NoFriction:

mdb.models[ModelName].interactionProperties['IntProp-1'].TangentialBehavior(

formulation=PENALTY, directionality=ISOTROPIC, slipRateDependency=OFF,

pressureDependency=OFF, temperatureDependency=OFF, dependencies=0,

table=((Friction, ), ), shearStressLimit=None,

maximumElasticSlip=FRACTION, fraction=0.005, elasticSlipStiffness=None)

else:

mdb.models[ModelName].interactionProperties['IntProp-1'].TangentialBehavior(

formulation=FRICTIONLESS)

if NoSeparation == True:

separationVar = OFF

else:

separationVar = ON

mdb.models[ModelName].interactionProperties['IntProp-1'].NormalBehavior(

pressureOverclosure=HARD, allowSeparation=separationVar,

constraintEnforcementMethod=DEFAULT)

mdb.models[ModelName].ContactStd(name='Int-1', createStepName='Initial')

#If column is stiffer:

if EmbeddedSteelMod >= NormalConcreteMod:

masterSurf = region1

slaveSurf = region2

else: #If continuum is stiffer

masterSurf = region2

slaveSurf = region1

mdb.models[ModelName].SurfaceToSurfaceContactStd(name='Int-1',

createStepName='Load', master=masterSurf, slave=slaveSurf, sliding=FINITE,

thickness=ON, interactionProperty='IntProp-1',

adjustMethod=NONE, initialClearance=OMIT, datumAxis=None,

clearanceRegion=None)

elif ModelType == 'RigidTie' or ModelType == 'Rigid' or ModelType == 'CohesiveZone':

mdb.models[ModelName].Tie(name='Constraint-1', master=region1,

slave=region2, positionToleranceMethod=COMPUTED, adjust=ON,

tieRotations=ON, thickness=ON)

else:

raise TypeError('Unknown ModelType')

def MeshSeedGenerate_Uniform():
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for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

if DataArray['SquareMesh'] ==True:

elementShape = [HEX, STRUCTURED]

else:

elementShape = [TET, FREE]

coh = offsetVal

if OnePartModel:

p = mdb.models[ModelName].parts['CombinedPart']

c = p.cells

pickedRegions = c[:]

p.setMeshControls(regions=pickedRegions, elemShape=elementShape[0], technique=

elementShape[1])

p.seedPart(size=MeshSize, deviationFactor=0.1, minSizeFactor=0.1)

p.generateMesh()

else:

#Column seeding and generation

p = mdb.models[ModelName].parts['Column']

c = p.cells

pickedRegions = c[:]

p.setMeshControls(regions=pickedRegions, elemShape=elementShape[0], technique=

elementShape[1])

p.seedPart(size=MeshSize, deviationFactor=0.1, minSizeFactor=0.1)

p.generateMesh()

#Foundation seeding and generation

p = mdb.models[ModelName].parts['Foundation']

c = p.cells

pickedRegions = c[:]

# p.setMeshControls(regions=pickedRegions, elemShape=elementShape[0], 

technique=elementShape[1])

p.seedPart(size=MeshSize, deviationFactor=0.1, minSizeFactor=0.1)

if CohesiveZone:

elemType1 = mesh.ElemType(elemCode=COH3D8, elemLibrary=STANDARD)

elemType2 = mesh.ElemType(elemCode=COH3D6, elemLibrary=STANDARD)

elemType3 = mesh.ElemType(elemCode=UNKNOWN_TET, elemLibrary=STANDARD)

if StrongAxis:

cells1 = c.findAt(((bf/4, db/2 + offsetVal/2, cmd-eL/2),))

cells2 = c.findAt(((bf/4, db/2 - tf - offsetVal/2, cmd-eL/2),))

cells3 = c.findAt(((bf/4, -db/2 + tf + offsetVal/2, cmd-eL/2),))

cells4 = c.findAt(((bf/4, -db/2 - offsetVal/2, cmd-eL/2),))

cells5 = c.findAt(((tw/2 + offsetVal/2,0.0, cmd-eL/2),))

cells6 = c.findAt(((bf/2 + offsetVal/2, db/2 - tf/2, cmd-eL/2),))

cells7 = c.findAt(((bf/2 + offsetVal/2, -db/2 + tf/2, cmd-eL/2),))

cells = cells1 + cells2 + cells3 + cells4 + cells5 + cells6 + cells7

pass #Corners

elif not StrongAxis:

cells1 = c.findAt(((db/4, tw/2 + coh/2, cmd-eL/2),))

cells2 = c.findAt(((db/4, -tw/2 - coh/2, cmd-eL/2),))

cells3 = c.findAt(((db/2 - tf - coh/2, db/4, cmd-eL/2),))

cells4 = c.findAt(((db/2 - tf - coh/2, -db/4, cmd-eL/2),))

cells5 = c.findAt(((db/2 + coh/2, 0.0, cmd-eL/2),))
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cells6 = c.findAt(((db/2 - tf/2, bf/2 + coh/2, cmd-eL/2),))

cells7 = c.findAt(((db/2 - tf/2, -bf/2 - coh/2, cmd-eL/2),))

pass #corners

cells = cells1 + cells2 + cells3 + cells4 + cells5 + cells6 + cells7

if BasePlate:

cells8 = c.getByBoundingBox(xMin=0.0, xMax=baseWidthX/2, yMin = -baseWidthY/2,

yMax = baseWidthY/2, zMin=cmd-eL, zMax=cmd-eL+offsetVal)#Above baseplate

cells9 = c.getByBoundingBox(xMin=0.0, xMax=baseWidthX/2, yMin = -baseWidthY/2,

yMax = baseWidthY/2, zMax=cmd-eL-baseDepth, zMin=cmd-eL-baseDepth-offsetVal)

#Below baseplate

cells10 = c.getByBoundingBox(xMin=0.0, xMax=baseWidthX/2, yMin = baseWidthY/2,

yMax = baseWidthY/2+offsetVal, zMin=cmd-eL-baseDepth, zMax=cmd-eL)

#Up-baseplate side

cells11 = c.getByBoundingBox(xMin=0.0, xMax=baseWidthX/2, yMin = -baseWidthY/2-

offsetVal, yMax = -baseWidthY/2, zMin=cmd-eL-baseDepth, zMax=cmd-eL)

#Down-baseplate side

cells12 = c.getByBoundingBox(xMin=baseWidthX/2, xMax=baseWidthX/2+offsetVal,

yMin = -baseWidthY/2, yMax = baseWidthY/2, zMin=cmd-eL-baseDepth, zMax=cmd-eL)

#Right-baseplate side

cells = cells + cells8 + cells9 + cells10 + cells11 + cells12

pickedRegions =(cells, )

p.setElementType(regions=pickedRegions, elemTypes=(elemType1, elemType2,

elemType3))

p.generateMesh()

def CreateBCs():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

#Fixed BC

a = mdb.models[ModelName].rootAssembly

if OnePartModel:

f = a.instances[ColumnPart + '-1'].faces

else:

f = a.instances['Foundation-1'].faces

facesBottom = f.getByBoundingBox(zMax=0.0)

facesSides = f.getByBoundingBox(xMin=mwX/2)

# facesTopSides = f.getByBoundingBox(yMin=-mwY/2, yMax=-mwY/2) + 

f.getByBoundingBox(yMin=mwY/2, yMax=mwY/2)

if BCs == 'Bottom':

faces1 = facesBottom

# elif BCs == 'Top':

# faces1 = facesTop

# assert PrimaryParameter <> 'GrilliModels'

# elif BCs == 'TopAndBottom':

# faces1 = facesBottom + facesTop

# assert PrimaryParameter <> 'GrilliModels'

elif BCs == 'Sides':

faces1 = facesSides

region = regionToolset.Region(faces=faces1)

mdb.models[ModelName].EncastreBC(name='FixedBC',

createStepName='Initial', region=region, localCsys=None)

-17-



www.manaraa.com

J:\Scripts\Scripts.py Monday, February 29, 2016 1:46 PM

#Symmetry BC

if not OnePartModel:

#Column symmetry

a = mdb.models[ModelName].rootAssembly

f = a.instances['Column-1'].faces

faces1 = f.getByBoundingBox(xMax = 0.0) #Get all faces that lie on the x=0.0 plane.

region = regionToolset.Region(faces=faces1)

mdb.models[ModelName].XsymmBC(name='ColumnSymmetry', createStepName='Initial',

region=region)

#Foundation symmetry

f = a.instances['Foundation-1'].faces

faces1 = f.getByBoundingBox(xMax = 0.0) #Get all faces that lie on the x=0.0 plane.

region = regionToolset.Region(faces=faces1)

mdb.models[ModelName].XsymmBC(name='ContinuumSymmetry', createStepName='Initial',

region=region)

else:

a = mdb.models[ModelName].rootAssembly

f = a.instances['CombinedPart-1'].faces

faces1 = f.getByBoundingBox(xMax = 0.0) #Get all faces that lie on the x=0.0 plane.

region = regionToolset.Region(faces=faces1)

mdb.models[ModelName].XsymmBC(name='Symmetry', createStepName='Initial',

region=region)

if CohesiveZone:

pass #Will not be affected by presence of cohesive zone when the getByBoundingBox 

method is used.

def CreateAppliedLoad():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

a = mdb.models[ModelName].rootAssembly

if not DistLoad:

#Axial and Lateral Load Together

region = a.instances[ColumnPart + '-1'].sets['Set-1']

mdb.models[ModelName].ConcentratedForce(name='Load-1',

createStepName='Load', region=region, cf1=0, cf2=load/2, cf3=-AxialLoad/2,

distributionType=UNIFORM, field='', localCsys=None)

else: #Distributed AKA traction load

#Lateral Load

s1 = a.instances['Column-1'].faces

side1Faces1 = s1.getByBoundingBox(zMin = pL+cmd)

region = regionToolset.Region(side1Faces=side1Faces1)

mdb.models[ModelName].SurfaceTraction(

name='TractionLoad', createStepName='Load', region=region, magnitude=load / SA,

directionVector=((0,0,0),(0,1,0)), distributionType=UNIFORM,

field='', localCsys=None, resultant=OFF)

#Axial Load

if AxialLoad != 0.0:

s1 = a.instances['Column-1'].faces

side1Faces1 = s1.getByBoundingBox(zMin = pL+cmd)

region = regionToolset.Region(side1Faces=side1Faces1)

mdb.models[ModelName].SurfaceTraction(

name='TractionLoad', createStepName='Load', region=region, magnitude=AxialLoad /
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SA,

directionVector=((0,0,0),(0,0,-1)), distributionType=UNIFORM,

field='', localCsys=None, resultant=OFF)

def RigidTop():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

a = mdb.models[ModelName].rootAssembly

e1 = a.instances[ColumnPart+ '-1'].edges

v1 = a.instances[ColumnPart+ '-1'].vertices

print(pL+cmd)

refID = a.ReferencePoint(point=v1.findAt(coordinates=(0.0, 0.0, pL+cmd))).id #This fails 

for some reason with one part models now. I'll look into the problem more the next time I 

run into the problem. (Presumably soon.) - TAJ 11/18/15

f1 = a.instances[ColumnPart + '-1'].faces

faces1 = f1.getByBoundingBox(zMin = pL+cmd)

region4=regionToolset.Region(faces=faces1)

r1 = a.referencePoints

refPoints1=(r1[refID], )

region1=regionToolset.Region(referencePoints=refPoints1)

mdb.models[ModelName].RigidBody(name='FlangeRigidBody',

refPointRegion=region1, tieRegion=region4)

def CreateJob():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

mdb.Job(name=ModelName, model=ModelName, description='',

type=ANALYSIS, atTime=None, waitMinutes=0, waitHours=0, queue='',

memory=90, memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,

explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,

modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',

scratch='', multiprocessingMode=DEFAULT, numCpus=4, numDomains=4)

def HistoryOutputRequest():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

regionDef=mdb.models[ModelName].rootAssembly.instances[ColumnPart + '-1'].sets['Set-1']

mdb.models[ModelName].HistoryOutputRequest(name='H-Output-2',

createStepName='Load', variables=('U1', 'U2'), region=regionDef,

sectionPoints=DEFAULT, rebar=EXCLUDE)

def FindDispAndOutput():

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

from string import upper

#Output algorithm: get node name.

p = mdb.models[ModelName].parts[ColumnPart]

n = p.nodes

if StrongAxis: radius = MeshSize/2 - 0.001

elif not StrongAxis: radius = tw/2 - 0.001

if not OnePartModel:
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nodes = n.getByBoundingSphere((0.0,0.0,cL), radius)

else:

nodes = n.getByBoundingSphere((0.0,0.0,cmd + pL), radius)

print(nodes)

print(DataArray)

loadnode = nodes[0].label

#Create XY data from the output history request.

odb = session.odbs[odbFileName]

session.XYDataFromHistory(name='Displacement at load', odb=odb,

outputVariableName='Spatial displacement: U2 PI: ' + upper(ColumnPart) + '-1 Node ' +

str(loadnode) + ' in NSET SET-1',

steps=('Load', ), )

#Report the XY data to the .output file

x0 = session.xyDataObjects['Displacement at load']

session.writeXYReport(fileName=ModelName+'.output', xyData=(x0, ))

#Enter the .output file and scrape the needed information.

#The number we want will be on the 6th line from the end.

f = open(ModelName+'.output')

lines = f.readlines()

myString = lines[-5]

# TotalDisplacement = float(myString[20:-1])

TotalDisplacement = float(myString[26:-1])

f.close()

TimeStamp = str(__TimeStamp())

kipload = float(load) / 1000.0

# TotalStiffness = kipload/TotalDisplacement

# TotalRotStiffness = TotalStiffness * pL**2

if StrongAxis: ColumnStiffness = 3 * EmbeddedSteelMod/1000 * Ix / pL**3 #in kips

elif not StrongAxis: ColumnStiffness = 3 * EmbeddedSteelMod/1000 * Iy / pL**3 #in kips

# ColumnStiffness = 3 * EmbeddedSteelMod * Ix / pL**3 #or Iy; in kips

ColumnDisplacement = kipload/ColumnStiffness

ConnDisplacement = TotalDisplacement - ColumnDisplacement

ConnStiffness = kipload / ConnDisplacement

ConnRotStiffness = ConnStiffness * pL**2

#Deposit needed information into output file.

with open(outputFile, 'a') as f:

f.write('%s,%s,%s,%s,%s,%s,%s,%s,%s,%s, %s,\n' %(ModelName, PrimaryParameter, Param1,

SecondaryParameter, Param2, ColumnName, eL, TotalDisplacement, ConnStiffness,

ConnRotStiffness, TimeStamp))

##########################################

#Main pre- and post- processing routines.#

##########################################

def Preprocessing(DataArray_local):

#Initialization

global DataArray

DataArray = DataArray_local

print(DataArray)
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for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

#Assertion lines to make sure crazy things don't happen later in the script.

if OnePartModel == True: assert ModelType == 'RigidTie' or ModelType == 'Rigid'

if BasePlate == False:

assert baseDepth == 0.0

if SquareMesh == True: assert UniformMesh == True

if OnePartModel == True: assert UniformMesh == True

if SquareMesh == True: #All parts should have homogeneous moduli of elasticity - not 

programmed to accept different moduli in this case.

assert BadConcreteMod == NormalConcreteMod

assert GroutMod == NormalConcreteMod

assert ProtrudingSteelMod == EmbeddedSteelMod

if BaseplateType <> 'None': assert BasePlate == True

if BaseplateType == 'None': assert BasePlate == False

Mdb() #Exit any open model database file, create a new, blank one. 

print(ModelName)

CreateModel()

ColumnCreation()

if SquareMesh == True and ColumnType == 'IBeam': DivideColumn()

CreateSet()

SketchFoundation()

if SquareMesh == True and ColumnType == 'IBeam': DivideFoundation()

CreateMaterials_DefineSections()

SectionAssign_OneMaterial()

CreateLoadStep()

AssemblyInstance()

if OnePartModel:

MergeInstances()

MeshSeedGenerate_Uniform()

else:

Contact()

if UniformMesh:

MeshSeedGenerate_Uniform()

else:

MeshSeedGenerate_NonUniform()

CreateBCs()

RigidTop()

CreateAppliedLoad()

CreateJob()

HistoryOutputRequest()

#Write input file

mdb.jobs[ModelName].writeInput(consistencyChecking=OFF)

#Save the model to open in postprocessing

mdb.saveAs(pathName=DataArray['mdbFileName'])

def Postprocessing(DataArray_local):

#Initialization
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global DataArray

DataArray = DataArray_local

for key in DataArray.keys():

exec('%s = DataArray["%s"]' %(key, key))

if CohesiveZone: DataArray['ColumnPart'] = 'Column' #Patch: I don't know where the bug is, 

but this should fix it.

# Open correct .odb file

session.openOdb(name=odbFileName)

#Open correct .mdb file

print(mdbFileName)

openMdb(pathName=mdbFileName)

CreateAndCheckOutputFile()

try:

FindDispAndOutput()

except:

pass

def main():

pass

if __name__ == '__main__':

main()
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